Advertisement

Genetic dissection of domestication-related traits in soybean through genotyping-by-sequencing of two interspecific mapping populations

  • Stephen A. Swarm
  • Lianjun Sun
  • Xutong Wang
  • Weidong Wang
  • Patrick J. Brown
  • Jianxin Ma
  • Randall L. Nelson
Original Article
  • 162 Downloads

Abstract

Key message

A total of 132 domestication-related QTLs, of which 41 were novel, were identified through genotyping-by-sequencing of two Glycine max × Glycine soja populations.

Abstract

Soybean [Glycine max (L.) Merr.] was domesticated in East Asia from the wild progenitor Glycine soja. The domestication process led to many distinct morphological changes that adapt it to cultivation. These include larger seeds, erect growth, larger stem diameter, reduced pod shattering, and altered growth habit. The objective of this study was to identify QTLs controlling key domestication-related traits (DRTs) using interspecific mapping populations. A total of 151 RILs from Williams 82 × PI 468916 and 510 RILs from Williams 82 × PI 479752 were utilized for QTL mapping. These lines were genotyped using a genotyping-by-sequencing protocol which resulted in approximately 5000 polymorphic SNP markers. The number of QTLs detected for each of the eleven DRTs ranged between 0–4 QTLs in the smaller Williams 82 × PI 468916 population and 3–16 QTLs in the larger Williams 82 × PI 479752 population. A total of 132 QTLs were detected, of which 51 are associated with selective sweeps previously related to soybean domestication. These QTLs were detected across all 20 chromosomes within 42 genomic regions. This study identifies 41 novel QTLs not detected in previous studies using smaller populations while also confirming the quantitative nature for several of the important DRTs in soybeans. These results would enable more effective use of the wild germplasm for soybean improvement.

Notes

Funding

Funding for this work was from the North Central Soybean Research Program (FY17–18) and Indiana Soybean Alliance of the United States (FY17–18).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Data availability

The data that support the findings of this study are shown in Supplementary Data.

Supplementary material

122_2018_3272_MOESM1_ESM.pdf (600 kb)
Supplementary Fig. S1 Discrimination of RILs into the Williams 82 × PI 468916 population (‘PI468916’) and Williams 82 × PI 479752 (‘PI479752’) based on 35,303 SNPs and five SSR markers. The first two principal components are plotted for each RIL and colored according to the k-means cluster analysis. The number of RILs classified into each group is indicated in parentheses. (PDF 600 kb)
122_2018_3272_MOESM2_ESM.pdf (349 kb)
Supplementary Fig. S2 Genetic distance (cM) versus physical distance (Mb based on Wm82.a2.v1) in WP468 (green), WP479 (red), and the combined populations (blue). (PDF 349 kb)
122_2018_3272_MOESM3_ESM.pdf (2.9 mb)
Supplementary Fig. S3 Matrix of scatter plots of phenotypic traits (upper panel) and Pearson correlations (lower panel, with p-values in blue). Density distributions are given on the diagonal. aFirst flowering (days after planting); bmaturity date (days after May 31); cstem diameter (mm); dmain stem length (cm); eshattering (1 to 6 rating); fgrowth habit (1 to 5 rating); glodging (1 to 9 rating); g100-seed weight (g); hleaflet size (1 to 5 rating); ileaflet shape (1 to 3 rating). (PDF 3002 kb)
122_2018_3272_MOESM4_ESM.xlsx (70 kb)
Supplementary material 4 (XLSX 70 kb)
122_2018_3272_MOESM5_ESM.xlsx (25 kb)
Supplementary material 5 (XLSX 24 kb)
122_2018_3272_MOESM6_ESM.xlsx (17 kb)
Supplementary material 6 (XLSX 17 kb)
122_2018_3272_MOESM7_ESM.xlsx (20 kb)
Supplementary material 7 (XLSX 20 kb)
122_2018_3272_MOESM8_ESM.xlsx (20 kb)
Supplementary material 8 (XLSX 19 kb)

References

  1. Akpertey A, Singh RJ, Diers BW, Graef GL, Mian MAR, Shannon JG, Scaboo AM, Hudson ME, Thurber CS, Brown PJ, Nelson RL (2018) Genetic introgression from Glycine tomentella to soybean to increase seed yield. Crop Sci 58:1277–1291CrossRefGoogle Scholar
  2. Bandillo NB, Lorenz AJ, Graef GL, Jarquin D, Hyten DL, Nelson RL, Specht JE (2017) Genome-wide association mapping of qualitatively inherited traits in a germplasm collection. Plant Genome.  https://doi.org/10.3835/plantgenome2016.06.0054 CrossRefPubMedGoogle Scholar
  3. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48CrossRefGoogle Scholar
  4. Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162Google Scholar
  5. Bernard RL (1975) The inheritance of appressed pubescence. Soybean Genet Newsl 2:34–36Google Scholar
  6. Broich SL, Palmer RG (1980) A cluster analysis of wild and domesticated soybean phenotypes. Euphytica 29(1):23–32CrossRefGoogle Scholar
  7. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19(7):889–890CrossRefGoogle Scholar
  8. Carpenter JA, Fehr WR (1986) Genetic variability for desirable agronomic traits in populations containing Glycine soja germplasm. Crop Sci 26(4):681–686CrossRefGoogle Scholar
  9. Carter TE, Nelson RL, Sneller CH, Cui Z (2004) Genetic diversity in soybean. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. American Society of Agronomy, Madison, pp 303–416Google Scholar
  10. Chen H, Shan Z, Sha A, Wu B, Yang Z, Chen S, Zhou R, Zhou X (2011) Quantitative trait loci analysis of stem strength and related traits in soybean. Euphytica 179(3):485–497CrossRefGoogle Scholar
  11. Doebley J, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134(2):559–570PubMedPubMedCentralGoogle Scholar
  12. Doebley J, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127(7):1309–1321CrossRefGoogle Scholar
  13. Dong Y, Yang X, Liu J, Wang BH, Liu BL, Wang YZ (2014) Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat Commun 5:3352CrossRefGoogle Scholar
  14. Dorweiler J, Stec A, Kermicle J, Doebley J (1993) Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262(5131):233–235CrossRefGoogle Scholar
  15. Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11(6):929–931CrossRefGoogle Scholar
  16. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) Fw22: a quantitative trait locus key to the evolution of tomato fruit size. Science 289(5476):85–88CrossRefGoogle Scholar
  17. Funatsuki H, Hajika M, Yamada T, Suzuki M, Hagihara S, Tanaka Y, Fujita S, Ishimoto M, Fujino K (2012) Mapping and use of QTLs controlling pod dehiscence in soybean. Breed Sci 61(5):554–558CrossRefGoogle Scholar
  18. Funatsuki H, Suzuki M, Hirose A, Inaba H, Yamada T, Hajika M, Komatsu K, Katayama T, Sayama T, Ishimoto M, Fujino K (2014) Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc Natl Acad Sci 111(50):17797–17802CrossRefGoogle Scholar
  19. Gizlice Z, Carter TE, Burton JW (1994) Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Sci 34(5):1143–1151CrossRefGoogle Scholar
  20. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9(2):e90346CrossRefGoogle Scholar
  21. Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38:D843–D846CrossRefGoogle Scholar
  22. Hammer K (1984) Das domestikationssyndrom. Die Kult. 32(3):11–34CrossRefGoogle Scholar
  23. Han Y, Zhao X, Liu D, Li Y, Lightfoot DA, Yang Z, Zhao L, Zhou G, Wang Z, Huang L, Zhang Z, Qiu L, Zheng H, Li W (2016) Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol 209(2):871–884  CrossRefGoogle Scholar
  24. Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci 103(45):16666–16671  CrossRefGoogle Scholar
  25. Keim P, Diers DW, Olson TC, Shoemaker RC (1990) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126(3):735–742PubMedPubMedCentralGoogle Scholar
  26. Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154(3):1220–1231CrossRefGoogle Scholar
  27. Kulkarni KP, Kim M, Shannon JG, Lee JD (2016) Identification of quantitative trait loci controlling soybean seed weight in recombinant inbred lines derived from PI 483463 (Glycine soja) × “Hutcheson” (G. max). Plant Breed 135(5):614–620CrossRefGoogle Scholar
  28. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang JJ, Shao G, Wang JJ, Sun SSM, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053–1059CrossRefGoogle Scholar
  29. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedPubMedCentralGoogle Scholar
  30. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25CrossRefGoogle Scholar
  31. Lee JM, Bush AL, Specht JE, Shoemaker RC (1999) Mapping of duplicate genes in soybean. Genome 42(5):829–836CrossRefGoogle Scholar
  32. Lee GA, Crawford GW, Liu L, Sasaki Y, Chen X (2011) Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS ONE 6(11):e26720CrossRefGoogle Scholar
  33. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69(1):1–33CrossRefGoogle Scholar
  34. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311(5769):1936–1939CrossRefGoogle Scholar
  35. Liu B, Fujita T, Yan ZH, Sakamoto S, Xu D, Abe J (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100(5):1027–1038CrossRefGoogle Scholar
  36. Mace ES, Buhariwalla KK, Buhariwalla HK, Crouch JH (2003) A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21(4):459–460CrossRefGoogle Scholar
  37. Maughan PJ, Maroof MAS, Buss GR (1996) Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet 93(4):574–579CrossRefGoogle Scholar
  38. Palmer RG, Pfeiffer TW, Buss GR, Kilen TC (2004) Qualitative genetics. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn. American Society of Agronomy, Madison, pp 137–233Google Scholar
  39. Peng J, Ronin Y, Fahima T, Roder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci 100(5):2489–2494CrossRefGoogle Scholar
  40. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  41. Simons KJ (2005) Molecular characterization of the major wheat domestication gene Q. Genetics 172(1):547–555CrossRefGoogle Scholar
  42. Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 8(1):1–12Google Scholar
  43. Song Q, Jenkins J, Jia G, Hyten DL, Pantalone V, Jackson SA, Schmutz J, Cregan PB (2016) Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics 17(1):33CrossRefGoogle Scholar
  44. Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci 107(13):5792–5797CrossRefGoogle Scholar
  45. Sun L, Miao Z, Cai C, Zhang D, Zhao M, Wu Y, Zhang X, Swarm SA, Zhou L, Zhang ZJ, Nelson RL, Ma J (2015) GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet 47(8):939–943CrossRefGoogle Scholar
  46. Swarts K, Li H, Romero Navarro JA, An D, Romay MC, Hearne S, Acharya C, Glaubitz JC, Mitchell S, Elshire RJ, Buckler ES, Bradbury PJ (2014) Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome.  https://doi.org/10.18637/jss.v069.i01 CrossRefGoogle Scholar
  47. Thurber CS, Ma JM, Higgins RH, Brown PJ (2013) Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production. Genome Biol 14(6):R68CrossRefGoogle Scholar
  48. Tian ZX, Wang XB, Lee R, Li YH, Specht JE, Nelson RL, McClean PE, Qiu LJ, Ma J (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci 107(19):8563–8568CrossRefGoogle Scholar
  49. Wang W, He Q, Yang H, Xiang S, Zhao T, Gai J (2013) Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica 189(2):293–307CrossRefGoogle Scholar
  50. Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lu S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci 109(32):E2155–E2164CrossRefGoogle Scholar
  51. Xin D, Qi Z, Jiang H, Hu Z, Zhu R, Hu J, Han H, Hu G, Liu C, Chen Q (2016) QTL location and epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS ONE 11(3):e0149380CrossRefGoogle Scholar
  52. Yan L, Li YH, Yang CY, Ren SX, Chang RZ, Zhang MC, Qiu LJ (2014) Identification and validation of an over-dominant QTL controlling soybean seed weight using populations derived from Glycine max × Glycine soja. Plant Breed 133(5):632–637CrossRefGoogle Scholar
  53. Zhang D, Sun L, Li S, Wang W, Ding Y, Swarm SA, Li L, Wang X, Tang X, Zhang Z, Tian Z, Brown PJ, Cai C, Nelson RL, Ma J (2018) Elevation of soybean seed oil content through selection for seed coat shininess. Nat Plants 4(1):30–35CrossRefGoogle Scholar
  54. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33(4):408–414CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  1. 1.Department of Crop SciencesUniversity of Illinois at Urbana–ChampaignUrbanaUSA
  2. 2.Department of Agronomy and Center for Plant BiologyPurdue UniversityWest LafayetteUSA
  3. 3.Soybean/Maize Germplasm, Pathology, and Genetics Research UnitUS Department of Agriculture-Agricultural Research ServiceUrbanaUSA
  4. 4.Beck’s Superior HybridsAtlantaUSA
  5. 5.College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
  6. 6.Department of Plant SciencesUniversity of California, DavisDavisUSA

Personalised recommendations