Advertisement

Accelerating crop genetic gains with genomic selection

  • Kai Peter Voss-Fels
  • Mark Cooper
  • Ben John HayesEmail author
Review Article
Part of the following topical collections:
  1. New technologies for plant breeding

Abstract

Key message

Genomic prediction based on additive genetic effects can accelerate genetic gain. There are opportunities for further improvement by including non-additive effects that access untapped sources of genetic diversity.

Abstract

Several studies have reported a worrying gap between the projected global future demand for plant-based products and the current annual rates of production increase, indicating that enhancing the rate of genetic gain might be critical for future food security. Therefore, new breeding technologies and strategies are required to significantly boost genetic improvement of future crop cultivars. Genomic selection (GS) has delivered considerable genetic gain in animal breeding and is becoming an essential component of many modern plant breeding programmes as well. In this paper, we review the lessons learned from implementing GS in livestock and the impact of GS on crop breeding, and discuss important features for the success of GS under different breeding scenarios. We highlight major challenges associated with GS including rapid genotyping, phenotyping, genotype-by-environment interaction and non-additivity and give examples for opportunities to overcome these issues. Finally, the potential of combining GS with other modern technologies in order to maximise the rate of crop genetic improvement is discussed, including the potential of increasing prediction accuracy by integration of crop growth models in GS frameworks.

Notes

Author contribution statement

KPVF, MC and BH jointly conceived the review, conducted the literature review and wrote the manuscript.

Compliance with ethical statement

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abed A, Pérez-Rodríguez P, Crossa J, Belzile F (2018) When less can be better. How can we make genomic selection more cost-effective and accurate in barley? Theor Appl Genet 131(9):1873–1890.  https://doi.org/10.1007/s00122-018-3120-8 CrossRefPubMedGoogle Scholar
  2. Araus JL, Cairns JE (2014) Field high-throughput phenotyping. The new crop breeding frontier. Trends Plant Sci 19(1):52–61.  https://doi.org/10.1016/j.tplants.2013.09.008 CrossRefPubMedGoogle Scholar
  3. Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high-throughput phenotyping into genetic gain. Trends Plant Sci 23(5):451–466.  https://doi.org/10.1016/j.tplants.2018.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Auinger H-J, Schönleben M, Lehermeier C, Schmidt M, Korzun V, Geiger HH, Piepho H-P, Gordillo A, Wilde P, Bauer E, Schön C-C (2016) Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.). Theor Appl Genet 129(11):2043–2053.  https://doi.org/10.1007/s00122-016-2756-5 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376.  https://doi.org/10.1371/journal.pone.0003376 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baker RJ (1988) Differential response to environmental stress. In: Weir BS, Eisen EJ, Goodman MM, Namkoong G (eds) Proceedings of the international conference on quantitative genetics. Sinauer Associates Inc., Sunderland, MA, pp 492–504Google Scholar
  7. Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved abiotic stress tolerance in maize adapted to Southern Africa. Agric Water Manag 80(1–3):212–224.  https://doi.org/10.1016/j.agwat.2005.07.014 CrossRefGoogle Scholar
  8. Basford KE, Cooper M (1998) Genotype × environment interactions and some considerations of their implications for wheat breeding in Australia This review is one of a series commissioned by the Advisory Committee of the Journal. Aust J Agric Res 49(2):153.  https://doi.org/10.1071/A97035 CrossRefGoogle Scholar
  9. Bayer PE, Ruperao P, Mason AS, Stiller J, Chan C-KK, Hayashi S, Long Y, Meng J, Sutton T, Visendi P, Varshney RK, Batley J, Edwards D (2015) High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theor Appl Genet 128(6):1039–1047.  https://doi.org/10.1007/s00122-015-2488-y CrossRefPubMedGoogle Scholar
  10. Bennewitz J, Solberg T, Meuwissen T (2009) Genomic breeding value estimation using nonparametric additive regression models. Genet Sel. Evol. GSE 41:20.  https://doi.org/10.1186/1297-9686-41-20 CrossRefPubMedGoogle Scholar
  11. Bernardo R (2017) Prospective targeted recombination and genetic gains for quantitative traits in maize. Plant Genome.  https://doi.org/10.3835/plantgenome2016.11.0118 CrossRefPubMedGoogle Scholar
  12. Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47(3):1082.  https://doi.org/10.2135/cropsci2006.11.0690 CrossRefGoogle Scholar
  13. Boer MP, Wright D, Feng L, Podlich DW, Luo L, Cooper M, van Eeuwijk FA (2007) A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177(3):1801–1813.  https://doi.org/10.1534/genetics.107.071068 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Boyer JS, Byrne P, Cassman KG, Cooper M, Delmer D, Greene T, Gruis F, Habben J, Hausmann N, Kenny N, Lafitte R, Paszkiewicz S, Porter D, Schlegel A, Schussler J, Setter T, Shanahan J, Sharp RE, Vyn TJ, Warner D, Gaffney J (2013) The U.S. drought of 2012 in perspective. A call to action. Glob Food Secur 2(3):139–143.  https://doi.org/10.1016/j.gfs.2013.08.002 CrossRefGoogle Scholar
  15. Brøndum RF, Su G, Janss L, Sahana G, Guldbrandtsen B, Boichard D, Lund MS (2015) Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. J Dairy Sci 98(6):4107–4116.  https://doi.org/10.3168/jds.2014-9005 CrossRefPubMedGoogle Scholar
  16. Buckler ES, Ilut DC, Wang X, Kretzschmar T, Gore MA, Mitchell SE (2016) rAmpSeq. Using repetitive sequences for robust genotyping. BioRxiv.  https://doi.org/10.1101/096628 CrossRefGoogle Scholar
  17. Busemeyer L, Ruckelshausen A, Möller K, Melchinger AE, Alheit KV, Maurer HP, Hahn V, Weissmann EA, Reif JC, Würschum T (2013) Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation. Sci Rep 3:2442.  https://doi.org/10.1038/srep02442 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bustos-Korts D, Malosetti M, Chapman S, van Eeuwijk F (2016) Modelling of genotype by environment interaction and prediction of complex traits across multiple environments as a synthesis of crop growth modelling, genetics and statistics. In: Yin X, Struik PC (eds) Crop systems biology. Springer International Publishing, Cham, pp 55–82Google Scholar
  19. Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize. A view from industry. Field Crops Res 90(1):19–34.  https://doi.org/10.1016/j.fcr.2004.07.003 CrossRefGoogle Scholar
  20. Campos H, Cooper M, Edmeades GO, Löffler C, Schussler JR, Ibanez M (2006) Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US corn Belt. Maydica 51:369–381Google Scholar
  21. Chapman SC, Cooper M, Butler DG, Henzell RG (2000a) Genotype by environment interactions affecting grain sorghum. Aust J Agric Res 51(2):197.  https://doi.org/10.1071/AR99020 CrossRefGoogle Scholar
  22. Chapman SC, Cooper M, Hammer GL, Butler DG (2000b) Genotype by environment interactions affecting grain sorghum. II. Frequencies of different seasonal patterns of drought stress are related to location effects on hybrid yields. Aust J Agric Res 51(2):209.  https://doi.org/10.1071/ar99021 CrossRefGoogle Scholar
  23. Chapman SC, Hammer GL, Butler DG, Cooper M (2000c) Genotype by environment interactions affecting grain sorghum. III. Temporal sequences and spatial patterns in the target population of environments. Aust J Agric Res 51(2):223.  https://doi.org/10.1071/ar99022 CrossRefGoogle Scholar
  24. Chapman SC, Cooper M, Podlich D, Hammer G (2003) Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agron J 95:99–113CrossRefGoogle Scholar
  25. Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize. A “gene-to-phenotype” modeling approach. Genetics 183(4):1507–1523.  https://doi.org/10.1534/genetics.109.105429 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer MF, Chapman SC (2011) Environment characterization as an aid to wheat improvement. Interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia. J Exp Bot 62(6):1743–1755.  https://doi.org/10.1093/jxb/erq459 CrossRefPubMedGoogle Scholar
  27. Cheverud JM, Routman EJ (1995) Epistasis and its contribution to genetic variance components. Genetics 139(3):1455–1461PubMedPubMedCentralGoogle Scholar
  28. Cheverud JM, Routman EJ (1996) Epistasis as a source of increased additive genetic variance at population bottlenecks. Evol Int J Org Evol 50(3):1042–1051.  https://doi.org/10.1111/j.1558-5646.1996.tb02345.x CrossRefGoogle Scholar
  29. Comstock RE (1977) Quantitative genetics and the design of breeding programs. In: Pollack E, Kempthorne O, Bailey TB (eds) Proceedings of the international conference on quantitative genetics. Iowa State University Press, Ames, IA, USA, pp 705–718Google Scholar
  30. Cooper M (1999) Concepts and strategies for plant adaptation research in rainfed lowland rice. Field Crops Res 64(1–2):13–34.  https://doi.org/10.1016/S0378-4290(99)00048-9 CrossRefGoogle Scholar
  31. Cooper M, Woodruff DR, Eisemann RL, Brennan PS, Delacy IH (1995) A selection strategy to accommodate genotype-by-environment interaction for grain yield of wheat. Managed-environments for selection among genotypes. Theor Appl Genet 90(3–4):492–502.  https://doi.org/10.1007/bf00221995 CrossRefPubMedGoogle Scholar
  32. Cooper M, Chapman SC, Podlich DW, Hammer GL (2002) The GP problem. Quantifying gene-to-phenotype relationships. In Silico Biol 2(2):151–164PubMedGoogle Scholar
  33. Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits. Detection and context for plant breeding. Curr Opin Plant Biol 12(2):231–240.  https://doi.org/10.1016/j.pbi.2009.01.006 CrossRefPubMedGoogle Scholar
  34. Cooper M, Gho C, Leafgren R, Tang T, Messina C (2014a) Breeding drought-tolerant maize hybrids for the US corn-belt. Discovery to product. J Exp Bot 65(21):6191–6204.  https://doi.org/10.1093/jxb/eru064 CrossRefPubMedGoogle Scholar
  35. Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014b) Predicting the future of plant breeding. Complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65(4):311.  https://doi.org/10.1071/cp14007 CrossRefGoogle Scholar
  36. Cooper M, Technow F, Messina C, Gho C, Totir LR (2016) Use of crop growth models with whole-genome prediction. Application to a maize multienvironment trial. Crop Sci 56(5):2141.  https://doi.org/10.2135/cropsci2015.08.0512 CrossRefGoogle Scholar
  37. Cowling WA, Li L, Siddique KHM, Henryon M, Berg P, Banks RG, Kinghorn BP (2017) Evolving gene banks. Improving diverse populations of crop and exotic germplasm with optimal contribution selection. J Exp Bot 68(8):1927–1939.  https://doi.org/10.1093/jxb/erw406 CrossRefPubMedGoogle Scholar
  38. Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 3(10):e3395.  https://doi.org/10.1371/journal.pone.0003395 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Daetwyler HD, Swan AA, van der Werf JHJ, Hayes BJ (2012) Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation. Genet. Sel Evol GSE 44:33.  https://doi.org/10.1186/1297-9686-44-33 CrossRefPubMedGoogle Scholar
  40. Davies RW, Flint J, Myers S, Mott R (2016) Rapid genotype imputation from sequence without reference panels. Nat Genet 48(8):965–969.  https://doi.org/10.1038/ng.3594 CrossRefPubMedPubMedCentralGoogle Scholar
  41. de Oliveira EJ, de Resende MDV, da Silva Santos V, Ferreira CF, Oliveira GAF, da Silva MS, de Oliveira LA, Aguilar-Vildoso CI (2012) Genome-wide selection in cassava. Euphytica 187(2):263–276.  https://doi.org/10.1007/s10681-012-0722-0 CrossRefGoogle Scholar
  42. DeLacy IH, Basford KE, Cooper M, Bull JK, McLaren CG (1996) Analysis of multi environmental trials: an historical perspective. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. Wallingford, UK, pp 39–124Google Scholar
  43. Desta ZA, Ortiz R (2014) Genomic selection. Genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601.  https://doi.org/10.1016/j.tplants.2014.05.006 CrossRefPubMedGoogle Scholar
  44. Dong Z, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M (2012) A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS ONE 7(8):e43450.  https://doi.org/10.1371/journal.pone.0043450 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. Plant Breed Rev 24:109–151Google Scholar
  46. Elias AA, Robbins KR, Doerge RW, Tuinstra MR (2016) Half a century of studying genotype × environment interactions in plant breeding experiments. Crop Sci 56(5):2090.  https://doi.org/10.2135/cropsci2015.01.0061 CrossRefGoogle Scholar
  47. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379.  https://doi.org/10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Fernandes SB, Dias KOG, Ferreira DF, Brown PJ (2018) Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum. Theor Appl Genet 131(3):747–755.  https://doi.org/10.1007/s00122-017-3033-y CrossRefPubMedGoogle Scholar
  49. Fischer KS, Edmeades GO, Johnson EC (1989) Selection for the improvment of maize yield under moisture deficits. Field Crops Res 22:227–243CrossRefGoogle Scholar
  50. Fischer T, Byerlee D, Edmeades G (2014) Crop yields and global food security. Will yield increase continue to feed the world? ACIAR Monograph, CanberraGoogle Scholar
  51. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374.  https://doi.org/10.1146/annurev.arplant.54.031902.134907 CrossRefPubMedGoogle Scholar
  52. Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Res 40(2):67–86.  https://doi.org/10.1016/0378-4290(94)00096-U CrossRefGoogle Scholar
  53. Gaffney J, Schussler J, Löffler C, Cai W, Paszkiewicz S, Messina C, Groeteke J, Keaschall J, Cooper M (2015) Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US corn belt. Crop Sci 55(4):1608.  https://doi.org/10.2135/cropsci2014.09.0654 CrossRefGoogle Scholar
  54. García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, van Tassell CP (2016) Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci USA 113(28):E3995–E4004.  https://doi.org/10.1073/pnas.1519061113 CrossRefPubMedGoogle Scholar
  55. Garner JB, Douglas ML, Williams SRO, Wales WJ, Marett LC, Nguyen TTT, Reich CM, Hayes BJ (2016) Genomic selection improves heat tolerance in dairy cattle. Sci Rep 6:34114.  https://doi.org/10.1038/srep34114 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gaynor RC, Gorjanc G, Bentley AR, Ober ES, Howell P, Jackson R, Mackay IJ, Hickey JM (2017) A two-part strategy for using genomic selection to develop inbred lines. Crop Sci 57(5):2372.  https://doi.org/10.2135/cropsci2016.09.0742 CrossRefGoogle Scholar
  57. Georges M, Charlier C, Hayes B (2018) Genomic selection of livestock and beyond. http://www.giga.uliege.be/upload/docs/application/pdf/2018-02/georges_nrg_2018.pdf
  58. Gibson G (2012) Rare and common variants. Twenty arguments. Nature reviews. Genetics 13(2):135–145.  https://doi.org/10.1038/nrg3118 CrossRefPubMedGoogle Scholar
  59. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10(6):381–391.  https://doi.org/10.1038/nrg2575 CrossRefPubMedGoogle Scholar
  60. Gorjanc G, Jenko J, Hearne SJ, Hickey JM (2016) Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genom 17:30.  https://doi.org/10.1186/s12864-015-2345-z CrossRefGoogle Scholar
  61. Gorjanc G, Dumasy J-F, Gonen S, Gaynor RC, Antolin R, Hickey JM (2017) Potential of low-coverage genotyping-by-sequencing and imputation for cost-effective genomic selection in biparental segregating populations. Crop Sci 57(3):1404.  https://doi.org/10.2135/cropsci2016.08.0675 CrossRefGoogle Scholar
  62. Gorjanc G, Gaynor RC, Hickey JM (2018) Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor Appl Genet.  https://doi.org/10.1007/s00122-018-3125-3 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, Cerwick SF, Dieter JA, Duncan KE, Howard RJ, Hou Z, Löffler CM, Cooper M, Simmons CR (2014) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65(1):249–260.  https://doi.org/10.1093/jxb/ert370 CrossRefPubMedGoogle Scholar
  64. Haldane JBS (1946) The interaction of nature and nurture. Ann Eugen 13(1):197–205.  https://doi.org/10.1111/j.1469-1809.1946.tb02358.x CrossRefPubMedGoogle Scholar
  65. Hall AJ, Richards RA (2013) Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res 143:18–33.  https://doi.org/10.1016/j.fcr.2012.05.014 CrossRefGoogle Scholar
  66. Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11(12):587–593.  https://doi.org/10.1016/j.tplants.2006.10.006 CrossRefPubMedGoogle Scholar
  67. Hammer GL, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci 49(1):299.  https://doi.org/10.2135/cropsci2008.03.0152 CrossRefGoogle Scholar
  68. Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME (2009a) Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol GSE 41:51.  https://doi.org/10.1186/1297-9686-41-51 CrossRefPubMedGoogle Scholar
  69. Hayes BJ, Visscher PM, Goddard ME (2009b) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 91(1):47–60.  https://doi.org/10.1017/S0016672308009981 CrossRefGoogle Scholar
  70. Hayes BJ, Daetwyler HD, Goddard ME (2016) Models for genome × environment interaction. Examples in Livestock. Crop Sci 56(5):2251.  https://doi.org/10.2135/cropsci2015.07.0451 CrossRefGoogle Scholar
  71. Hayes BJ, Panozzo J, Walker CK, Choy AL, Kant S, Wong D, Tibbits J, Daetwyler HD, Rochfort S, Hayden MJ, Spangenberg GC (2017) Accelerating wheat breeding for end-use quality with multi-trait genomic predictions incorporating near infrared and nuclear magnetic resonance-derived phenotypes. TAG Theor Appl Genet 130(12):2505–2519.  https://doi.org/10.1007/s00122-017-2972-7 CrossRefPubMedGoogle Scholar
  72. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):1.  https://doi.org/10.2135/cropsci2008.08.0512 CrossRefGoogle Scholar
  73. Heffner EL, Jannink J-L, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4(1):65.  https://doi.org/10.3835/plantgenome2010.12.0029 CrossRefGoogle Scholar
  74. Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding. A comparison of models. Crop Sci 52(1):146.  https://doi.org/10.2135/cropsci2011.06.0297 CrossRefGoogle Scholar
  75. Heslot N, Akdemir D, Sorrells ME, Jannink J-L (2014) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127(2):463–480.  https://doi.org/10.1007/s00122-013-2231-5 CrossRefPubMedGoogle Scholar
  76. Hickey JM, Chiurugwi T, Mackay I, Powell W (2017) Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat Genet 49(9):1297–1303.  https://doi.org/10.1038/ng.3920 CrossRefPubMedGoogle Scholar
  77. Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4(2):e1000008.  https://doi.org/10.1371/journal.pgen.1000008 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hirsch CN, Springer NM (2018) Weeding out bad alleles. Nat Plants 4(4):193–194.  https://doi.org/10.1038/s41477-018-0133-x CrossRefPubMedGoogle Scholar
  79. Holland JB, Nyquist W, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: and update. Plant Breed Rev 22:9–112Google Scholar
  80. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551.  https://doi.org/10.1146/annurev-arplant-050213-035715 CrossRefPubMedGoogle Scholar
  81. Hunt CH, van Eeuwijk FA, Mace ES, Hayes BJ, Jordan DR (2018) Development of genomic prediction in Sorghum. Crop Sci 58(2):690.  https://doi.org/10.2135/cropsci2017.08.0469 CrossRefGoogle Scholar
  82. Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding. From theory to practice. Brief Funct Genom 9(2):166–177.  https://doi.org/10.1093/bfgp/elq001 CrossRefGoogle Scholar
  83. Johnsson M, Gaynor RC, Jenko J, Gorjanc G, de Koning D-J, Hickey JM (2018) Removal of alleles by genome editing—RAGE against the deleterious load. BioRxiv.  https://doi.org/10.1101/335497 CrossRefGoogle Scholar
  84. Kirigwi FM, van Ginkel M, Trethowan R, Sears RG, Rajaram S, Paulsen GM (2004) Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica 135(3):361–371.  https://doi.org/10.1023/B:EUPH.0000013375.66104.04 CrossRefGoogle Scholar
  85. Koebner RMD, Summers RW (2003) 21st century wheat breeding. Plot selection or plate detection? Trends Biotechnol 21(2):59–63.  https://doi.org/10.1016/s0167-7799(02)00036-7 CrossRefPubMedGoogle Scholar
  86. Kono TJY, Fu F, Mohammadi M, Hoffman PJ, Liu C, Stupar RM, Smith KP, Tiffin P, Fay JC, Morrell PL (2016) The role of deleterious substitutions in crop genomes. Mol Biol Evol 33(9):2307–2317.  https://doi.org/10.1093/molbev/msw102 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Krause MR, González Pérez L, Crossa J, Pérez-Rodríguez P, Montesinos-López OA, Singh R, Dreisigacker S, Poland J, Rutkoski J, Sorrells ME, Gore MA, Mondal S (2018) Use of hyperspectral reflectance-derived relationship matrices for genomic prediction of grain yield in wheat. BioRxiv.  https://doi.org/10.1101/389825 CrossRefGoogle Scholar
  88. La Fuente GND, Frei UK, Lübberstedt T (2013) Accelerating plant breeding. Trends Plant Sci 18(12):667–672.  https://doi.org/10.1016/j.tplants.2013.09.001 CrossRefGoogle Scholar
  89. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84–87.  https://doi.org/10.1038/nature16467 CrossRefPubMedGoogle Scholar
  90. Lin Z, Hayes BJ, Daetwyler HD (2014) Genomic selection in crops, trees and forages. A review. Crop Pasture Sci 65(11):1177.  https://doi.org/10.1071/CP13363 CrossRefGoogle Scholar
  91. Lin Z, Cogan NOI, Pembleton LW, Spangenberg GC, Forster JW, Hayes BJ, Daetwyler HD (2016) Genetic gain and inbreeding from genomic selection in a simulated commercial breeding program for perennial ryegrass. Plant Genome.  https://doi.org/10.3835/plantgenome2015.06.0046 CrossRefPubMedGoogle Scholar
  92. Löffler CM, Wei J, Fast T, Gogerty J, Langton S, Bergman M, Merrill B, Cooper M (2005) Classification of maize environments using crop simulation and geographic information systems. Crop Sci 45(5):1708.  https://doi.org/10.2135/cropsci2004.0370 CrossRefGoogle Scholar
  93. Longin CFH, Reif JC (2014) Redesigning the exploitation of wheat genetic resources. Trends Plant Sci 19(10):631–636.  https://doi.org/10.1016/j.tplants.2014.06.012 CrossRefPubMedGoogle Scholar
  94. Lorenz AJ, Smith KP (2015) Adding genetically distant individuals to training populations reduces genomic prediction accuracy in barley. Crop Sci 55(6):2657.  https://doi.org/10.2135/cropsci2014.12.0827 CrossRefGoogle Scholar
  95. Lorenz AJ, Smith KP, Jannink J-L (2012) Potential and optimization of genomic selection for fusarium head blight resistance in six-row barley. Crop Sci 52(4):1609.  https://doi.org/10.2135/cropsci2011.09.0503 CrossRefGoogle Scholar
  96. Lu D, Akanno EC, Crowley JJ, Schenkel F, Li H, de Pauw M, Moore SS, Wang Z, Li C, Stothard P, Plastow G, Miller SP, Basarab JA (2016) Accuracy of genomic predictions for feed efficiency traits of beef cattle using 50 K and imputed HD genotypes. J Anim Sci 94(4):1342–1353.  https://doi.org/10.2527/jas.2015-0126 CrossRefPubMedGoogle Scholar
  97. Ly D, Hamblin M, Rabbi I, Melaku G, Bakare M, Gauch HG, Okechukwu R, Dixon AGO, Kulakow P, Jannink J-L (2013) Relatedness and genotype × environment interaction affect prediction accuracies in genomic selection. A study in Cassava. Crop Sci 53(4):1312.  https://doi.org/10.2135/cropsci2012.11.0653 CrossRefGoogle Scholar
  98. MacLeod IM, Bowman PJ, Vander Jagt CJ, Haile-Mariam M, Kemper KE, Chamberlain AJ, Schrooten C, Hayes BJ, Goddard ME (2016) Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits. BMC Genom 17:144.  https://doi.org/10.1186/s12864-016-2443-6 CrossRefGoogle Scholar
  99. Malosetti M, Bustos-Korts D, Boer MP, van Eeuwijk FA (2016) Predicting responses in multiple environments. Issues in relation to genotype × environment interactions. Crop Sci 56(5):2210.  https://doi.org/10.2135/cropsci2015.05.0311 CrossRefGoogle Scholar
  100. Marjoram P, Zubair A, Nuzhdin SV (2014) Post-GWAS. Where next more samples, more SNPs or more biology? Heredity 112(1):79–88.  https://doi.org/10.1038/hdy.2013.52 CrossRefPubMedGoogle Scholar
  101. Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield-trait performance landscapes. From theory to application in breeding maize for drought tolerance. J Exp Bot 62(3):855–868.  https://doi.org/10.1093/jxb/erq329 CrossRefPubMedGoogle Scholar
  102. Messina CD, Sinclair TR, Hammer GL, Curan D, Thompson J, Oler Z, Gho C, Cooper M (2015) Limited-transpiration trait may increase maize drought tolerance in the US Corn belt. Agron J 107(6):1978.  https://doi.org/10.2134/agronj15.0016 CrossRefGoogle Scholar
  103. Messina CD, Technow F, Tang T, Totir R, Gho C, Cooper M (2018) Leveraging biological insight and environmental variation to improve phenotypic prediction. Integrating crop growth models (CGM) with whole genome prediction (WGP). Eur J Agron.  https://doi.org/10.1016/j.eja.2018.01.007 CrossRefGoogle Scholar
  104. Meuwissen T, Goddard M (2010) Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 185(2):623–631.  https://doi.org/10.1534/genetics.110.116590 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829PubMedPubMedCentralGoogle Scholar
  106. Meuwissen T, Hayes B, Goddard M (2016) Genomic selection. A paradigm shift in animal breeding. Anim Front 6(1):6–14.  https://doi.org/10.2527/af.2016-0002 CrossRefGoogle Scholar
  107. Mezmouk S, Ross-Ibarra J (2014) The pattern and distribution of deleterious mutations in maize. G3 (Bethesda, Md.) 4(1):163–171.  https://doi.org/10.1534/g3.113.008870 CrossRefGoogle Scholar
  108. Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44(5):1560–1571CrossRefGoogle Scholar
  109. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5(3):103.  https://doi.org/10.3835/plantgenome2012.06.0006 CrossRefGoogle Scholar
  110. Qian L, Hickey LT, Stahl A, Werner CR, Hayes B, Snowdon RJ, Voss-Fels KP (2017) Exploring and harnessing haplotype diversity to improve yield stability in crops. Front Plant Sci 8:1534.  https://doi.org/10.3389/fpls.2017.01534 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, Bredeson JV, Bart RS, Verma J, Buckler ES, Lu F (2017) Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat Genet 49(6):959–963.  https://doi.org/10.1038/ng.3845 CrossRefPubMedGoogle Scholar
  112. Rebetzke GJ, Chenu K, Biddulph B, Moeller C, Deery DM, Rattey AR, Bennett D, Barrett-Lennard EG, Mayer JE (2013) A multisite managed environment facility for targeted trait and germplasm phenotyping. Funct Plant Biol 40(1):1.  https://doi.org/10.1071/FP12180 CrossRefGoogle Scholar
  113. Reyes A, Messina CD, Hammer GL, Liu L, van Oosterom E, Lafitte R, Cooper M (2015) Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt. J Exp Bot 66(22):7339–7346.  https://doi.org/10.1093/jxb/erv430 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44(2):217–220.  https://doi.org/10.1038/ng.1033 CrossRefPubMedGoogle Scholar
  115. Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J-L, Sorrells M (2012) Evaluation of genomic prediction methods for fusarium head blight resistance in wheat. Plant Genome 5(2):51.  https://doi.org/10.3835/plantgenome2012.02.0001 CrossRefGoogle Scholar
  116. Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J, Reynolds M, Singh R (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 (Bethesda Md.) 6(9):2799–2808.  https://doi.org/10.1534/g3.116.032888 CrossRefGoogle Scholar
  117. Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes. Choosing the right tool for the right application. Plant Biotechnol J 15(2):149–161.  https://doi.org/10.1111/pbi.12645 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Schön CC, Simianer H (2015) Resemblance between two relatives—animal and plant breeding. J Anim Breed Genet Zeitschrift fur Tierzuchtung und Zuchtungsbiologie 132(1):1–2.  https://doi.org/10.1111/jbg.12137 CrossRefPubMedGoogle Scholar
  119. Shojaei Saadi HA, Vigneault C, Sargolzaei M, Gagné D, Fournier É, de Montera B, Chesnais J, Blondin P, Robert C (2014) Impact of whole-genome amplification on the reliability of pre-transfer cattle embryo breeding value estimates. BMC Genom 15:889.  https://doi.org/10.1186/1471-2164-15-889 CrossRefGoogle Scholar
  120. Singh AK, Ganapathysubramanian B, Sarkar S, Singh A (2018) Deep learning for plant stress phenotyping. Trends and future perspectives. Trends Plant Sci 23(10):883–898.  https://doi.org/10.1016/j.tplants.2018.07.004 CrossRefPubMedGoogle Scholar
  121. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, Atlin G, Jannink J-L, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa). Effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11(2):e1004982.  https://doi.org/10.1371/journal.pgen.1004982 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Tanaka R, Iwata H (2018) Bayesian optimization for genomic selection. A method for discovering the best genotype among a large number of candidates. TAG Theoret Appl Genet Theoretische und angewandte Genetik 131(1):93–105.  https://doi.org/10.1007/s00122-017-2988-z CrossRefGoogle Scholar
  123. Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol CB 27(15):R770–R783.  https://doi.org/10.1016/j.cub.2017.05.055 CrossRefPubMedGoogle Scholar
  124. Technow F, Messina CD, Totir LR, Cooper M (2015) Integrating crop growth models with whole genome prediction through approximate bayesian computation. PLoS ONE 10(6):e0130855.  https://doi.org/10.1371/journal.pone.0130855 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science (New York NY) 327(5967):818–822.  https://doi.org/10.1126/science.1183700 CrossRefGoogle Scholar
  126. Trethowan RM, Reynolds M, Ortiz-Monasterio KS (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146(4):405–413.  https://doi.org/10.1111/j.1744-7348.2005.040137.x CrossRefGoogle Scholar
  127. Trick M, Adamski NM, Mugford SG, Jiang C-C, Febrer M, Uauy C (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12:14.  https://doi.org/10.1186/1471-2229-12-14 CrossRefPubMedPubMedCentralGoogle Scholar
  128. van Eeuwijk FA, Bustos-Korts D, Millet EJ, Boer MP, Kruijer W, Thompson A, Malosetti M, Iwata H, Quiroz R, Kuppe C, Muller O, Blazakis KN, Yu K, Tardieu F, Chapman SC (2018) Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Sci 1:1.  https://doi.org/10.1016/j.plantsci.2018.06.018 CrossRefGoogle Scholar
  129. van Oosterom EJ, Yang Z, Zhang F, Deifel KS, Cooper M, Messina CD, Hammer GL (2016) Hybrid variation for root system efficiency in maize. Potential links to drought adaptation. Functional Plant Biol. 43(6):502.  https://doi.org/10.1071/fp15308 CrossRefGoogle Scholar
  130. Voss-Fels KP, Herzog E, Dreisigacker S, Sukurmaran S, Watson A, Frisch M, Hayes BJ, Hickey LT (2018a) SpeedGS to accelerate genetic gain in spring wheat. In: Miedaner T, Korzun V (eds) Applications of genetic and genomic research in cereals, 1st edn. Woodhead Publishing, CambridgeGoogle Scholar
  131. Voss-Fels KP, Snowdon RJ, Hickey LT (2018b) Designer roots for future crops. Trends Plant Sci.  https://doi.org/10.1016/j.tplants.2018.08.004 CrossRefPubMedGoogle Scholar
  132. Wang X, Singh D, Marla S, Morris G, Poland J (2018) Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods 14:53.  https://doi.org/10.1186/s13007-018-0324-5 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, Asyraf Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23–29.  https://doi.org/10.1038/s41477-017-0083-8 CrossRefPubMedGoogle Scholar
  134. Weber VS, Melchinger AE, Magorokosho C, Makumbi D, Bänziger M, Atlin GN (2012) Efficiency of managed-stress screening of elite maize hybrids under drought and low nitrogen for yield under rainfed conditions in Southern Africa. Crop Sci 52(3):1011.  https://doi.org/10.2135/cropsci2011.09.0486 CrossRefGoogle Scholar
  135. Werner CR, Qian L, Voss-Fels KP, Abbadi A, Leckband G, Frisch M, Snowdon RJ (2018a) Genome-wide regression models considering general and specific combining ability predict hybrid performance in oilseed rape with similar accuracy regardless of trait architecture. Theor Appl Genet 131(2):299–317.  https://doi.org/10.1007/s00122-017-3002-5 CrossRefPubMedGoogle Scholar
  136. Werner CR, Voss-Fels KP, Miller CN, Qian W, Hua W, Guan C-Y, Snowdon RJ, Qian L (2018b) Effective genomic selection in a narrow-genepool crop with low-density markers. Asian rapeseed as an example. Plant Genome.  https://doi.org/10.3835/plantgenome2017.09.0084 CrossRefPubMedGoogle Scholar
  137. Wolc A, Zhao HH, Arango J, Settar P, Fulton JE, O’Sullivan NP, Preisinger R, Stricker C, Habier D, Fernando RL, Garrick DJ, Lamont SJ, Dekkers JCM (2015) Response and inbreeding from a genomic selection experiment in layer chickens. Genet Sel Evol GSE 47:59.  https://doi.org/10.1186/s12711-015-0133-5 CrossRefPubMedGoogle Scholar
  138. Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. TAG Theoret Appl Genet Theoretische und angewandte Genetik 129(4):653–673.  https://doi.org/10.1007/s00122-016-2691-5 CrossRefGoogle Scholar
  139. Yabe S, Iwata H, Jannink J-L (2017) A simple package to script and simulate breeding schemes. The breeding scheme language. Crop Sci 57(3):1347.  https://doi.org/10.2135/cropsci2016.06.0538 CrossRefGoogle Scholar
  140. Yang S, Fresnedo-Ramírez J, Wang M, Cote L, Schweitzer P, Barba P, Takacs EM, Clark M, Luby J, Manns DC, Sacks G, Mansfield AK, Londo J, Fennell A, Gadoury D, Reisch B, Cadle-Davidson L, Sun Q (2016) A next-generation marker genotyping platform (AmpSeq) in heterozygous crops A case study for marker-assisted selection in grapevine. Hortic Res 3:16002.  https://doi.org/10.1038/hortres.2016.2 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Yang J, Mezmouk S, Baumgarten A, Buckler ES, Guill KE, McMullen MD, Mumm RH, Ross-Ibarra J (2017) Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genet 13(9):e1007019.  https://doi.org/10.1371/journal.pgen.1007019 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Yu X, Li X, Guo T, Zhu C, Wu Y, Mitchell SE, Roozeboom KL, Wang D, Wang ML, Pederson GA, Tesso TT, Schnable PS, Bernardo R, Yu J (2016) Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat Plants 2:16150.  https://doi.org/10.1038/nplants.2016.150 CrossRefPubMedGoogle Scholar
  143. Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin FH, Ranc N, Reif JC (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124(4):769–776.  https://doi.org/10.1007/s00122-011-1745-y CrossRefPubMedGoogle Scholar
  144. Zhong S, Dekkers JCM, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines. A Barley case study. Genetics 182(1):355–364.  https://doi.org/10.1534/genetics.108.098277 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandSt LuciaAustralia

Personalised recommendations