Advertisement

Introgression reshapes recombination distribution in grapevine interspecific hybrids

  • Marion Delame
  • Emilce Prado
  • Sophie Blanc
  • Guillaume Robert-Siegwald
  • Christophe Schneider
  • Pere Mestre
  • Camille Rustenholz
  • Didier Merdinoglu
Original Article
  • 49 Downloads

Abstract

Key message

In grapevine interspecific hybrids, meiotic recombination is suppressed in homeologous regions and enhanced in homologous regions of recombined chromosomes, whereas crossover rate remains unchanged when chromosome pairs are entirely homeologous.

Abstract

Vitis rotundifolia, an American species related to the cultivated European grapevine Vitis vinifera, has a high level of resistance to several grapevine major diseases and is consequently a valuable resource for grape breeding. However, crosses between both species most often lead to very few poorly fertile hybrids. In this context, identifying genetic and genomic features that make cross-breeding between both species difficult is essential. To this end, three mapping populations were generated by pseudo-backcrosses using V. rotundifolia as the donor parent and several V. vinifera cultivars as the recurrent parents. Genotyping-by-sequencing was used to establish high-density genetic linkage maps and to determine the genetic composition of the chromosomes of each individual. A good collinearity of the SNP positions was observed between parental maps, confirming the synteny between both species, except on lower arm of chromosome 7. Interestingly, recombination rate in V. rotundifolia × V. vinifera interspecific hybrids depends on the length of the introgressed region. It is similar to grapevine for chromosome pairs entirely homeologous. Conversely, for chromosome pairs partly homeologous, recombination is suppressed in the homeologous regions, whereas it is enhanced in the homologous ones. This balance leads to the conservation of the total genetic length of each chromosome between V. vinifera and hybrid maps, whatever the backcross level and the proportion of homeologous region. Altogether, these results provide new insight to optimize the use of V. rotundifolia in grape breeding and, more generally, to improve the introgression of gene of interest from wild species related to crops.

Notes

Acknowledgements

We gratefully acknowledge the Fondation Jean Poupelain for funding our work through the HealthyGrape2 program. This work was also partially funded by the French “Agence Nationale de la Recherche” (ANR-08-GENM-007). We are grateful to E. Duchêne for useful discussions on R scripts. We thank V. Dumas and J. Misbach for excellent assistance in plant maintenance and growing.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

122_2018_3260_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1073 kb)
122_2018_3260_MOESM2_ESM.pdf (680 kb)
Supplementary material 2 (PDF 679 kb)
122_2018_3260_MOESM3_ESM.pdf (22 kb)
Supplementary material 3 (PDF 22 kb)
122_2018_3260_MOESM4_ESM.pdf (310 kb)
Supplementary material 4 (PDF 310 kb)
122_2018_3260_MOESM5_ESM.pdf (328 kb)
Supplementary material 5 (PDF 327 kb)
122_2018_3260_MOESM6_ESM.pdf (275 kb)
Supplementary material 6 (PDF 274 kb)

References

  1. Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027CrossRefPubMedGoogle Scholar
  2. Atlagić J (2004) Roles of interspecific hybridization and cytogenetic studies in sunflower breeding. Helia 27:1–24CrossRefGoogle Scholar
  3. Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377CrossRefPubMedGoogle Scholar
  4. Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663–1675CrossRefPubMedGoogle Scholar
  5. Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Rühl EH, Mestre P, Merdinoglu D (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123:43–53CrossRefPubMedGoogle Scholar
  6. Boubals D (1966) Étude de la distribution et des causes de la résistance au phylloxera radicicole chez les Vitacées. Annales de l’amélioration des plantes 16:145–184Google Scholar
  7. Bouquet A (1980) Vitis × Muscadinia hybridization: a new way in grape breeding for disease resistance in France. In: Proceedings of the 3rd international symposium on grape breeding, pp 42–61Google Scholar
  8. Bouquet A (1981) Resistance to grape fanleaf virus in muscadine grape inoculated with Xiphinema index. Plant Dis 65:791–793CrossRefGoogle Scholar
  9. Bradshaw JE, Ramsay G (2005) Utilisation of the Commonwealth Potato Collection in potato breeding. Euphytica 146:9–19CrossRefGoogle Scholar
  10. Brar DS, Khush GS (1997) Alien introgression in rice. In: Sasaki T, Moore G (eds) Oryza: from molecule to plant. Springer, Dordrecht, pp 35–47CrossRefGoogle Scholar
  11. Brennan AC, Hiscock SJ, Abbott RJ (2014) Interspecific crossing and genetic mapping reveal intrinsic genomic incompatibility between two Senecio species that form a hybrid zone on Mount Etna, Sicily. Heredity 113:195–204CrossRefPubMedPubMedCentralGoogle Scholar
  12. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890CrossRefPubMedGoogle Scholar
  13. Cadle-Davidson L (2008) Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis 92:1577–1584CrossRefGoogle Scholar
  14. Cadle-Davidson L, Chicoine DR, Consolie NH (2011) Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis 95:202–211CrossRefGoogle Scholar
  15. Canady MA, Ji Y, Chetelat RT (2006) Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genetics 174:1775–1788CrossRefPubMedPubMedCentralGoogle Scholar
  16. den Boer E, Zhang NW, Pelgrom K, Visser RGF, Niks RE, Jeuken MJW (2013) Fine mapping quantitative resistances to downy mildew in lettuce revealed multiple sub-QTLs with plant stage dependent effects reducing or even promoting the infection. Theor Appl Genet 126:2995–3007CrossRefGoogle Scholar
  17. Detjen LR (1919) The limits in hybridization of Vitis rotundifolia with related species and genera. N C Agric Exp Stn Tech Bull 17:5–26Google Scholar
  18. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382CrossRefPubMedGoogle Scholar
  19. Dumont BL (2017) Variation and evolution of the meiotic requirement for crossing over in mammals. Genetics 205:155–168CrossRefPubMedGoogle Scholar
  20. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE.  https://doi.org/10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feechan A, Anderson C, Torregrosa L et al (2013) Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76:661–674CrossRefPubMedGoogle Scholar
  22. Garg H, Banga S, Bansal P, Atri C, Banga SS (2007) Hybridizing Brassica rapa with wild crucifers Diplotaxis erucoides and Brassica maurorum. Euphytica 156:417–424CrossRefGoogle Scholar
  23. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE.  https://doi.org/10.1371/journal.pone.0090346 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Goldy RG, Onokpise OU (2001) Genetics and breeding. In: Basiouny FM, Himelrick DG (eds) Muscadine grapes. ASHS Press, Alexandria, pp 51–90Google Scholar
  25. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13CrossRefGoogle Scholar
  26. Hunter N, Chambers SR, Louis EJ, Borts RH (1996) The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J 15:1726CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefPubMedGoogle Scholar
  28. Jelenkovic G, Olmo HP (1968) Cytogenetics of Vitis. III. Partially fertile F1 diploid hybrids between V. vinifera L. and V. rotundifolia Michx. Vitis 7:281–293Google Scholar
  29. Jiang CX, Chee PW, Draye X, Morrell PL, Smith CW, Paterson AH (2000) Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evolution 54:798–814CrossRefPubMedGoogle Scholar
  30. Johnston PA, Niks RE, Meiyalaghan V, Blanchet E, Pickering R (2013) Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theor Appl Genet 126:1613–1625CrossRefPubMedGoogle Scholar
  31. Kauppi L, Jeffreys AJ, Keeney S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5:413–424CrossRefPubMedGoogle Scholar
  32. Kullan ARK, van Dyk MM, Jones N, Kanzler A, Bayley A, Myburg AA (2012) High-density genetic linkage maps with over 2,400 sequence-anchored DArT markers for genetic dissection in an F2 pseudo-backcross of Eucalyptus grandis × E. urophylla. Tree Genet Genomes 8:163–175CrossRefGoogle Scholar
  33. Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP SSR AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626CrossRefPubMedGoogle Scholar
  34. Li L, Jean M, Belzile F (2006) The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J 45:908–916CrossRefPubMedGoogle Scholar
  35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecassis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 1:2.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefGoogle Scholar
  36. Li W, He C, Freudenberg J (2011) A mathematical framework for examining whether a minimum number of chiasmata is required per metacentric chromosome or chromosome arm in human. Genomics 97:186–192CrossRefPubMedGoogle Scholar
  37. Liu S, Li Y, Qin Z, Geng X, Bao L, Kaltenboeck L, Kucuktas H, Dunham R, Liu Z (2016) High-density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish. Anim Genet 47:81–90CrossRefPubMedGoogle Scholar
  38. Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Némorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278CrossRefPubMedGoogle Scholar
  39. Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M (2015) The molecular biology of meiosis in plants. Annu Rev Plant Biol 66:297–327CrossRefGoogle Scholar
  40. Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic.  https://doi.org/10.17660/actahortic.2003.603.57 CrossRefGoogle Scholar
  41. Myburg AA, Vogl C, Griffin AR, Sederoff RR, Whetten RW (2004) Genetics of postzygotic isolation in Eucalyptus: whole-genome analysis of barriers to introgression in a wide interspecific cross of Eucalyptus grandis and E. globulus. Genetics 166:1405–1418CrossRefPubMedPubMedCentralGoogle Scholar
  42. Olmo HP (1986) The potential role of (vinifera × rotundifolia) hybrids in grape variety improvement. Cell Mol Life Sci 42:921–926CrossRefGoogle Scholar
  43. Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Oláh R, Walker MA (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol.  https://doi.org/10.1186/s12870-016-0855-8 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Patel GI, Olmo HP (1955) Cytogenetics of Vitis: I. The hybrid V. vinifera × V. rotundifolia. Am J Bot 42:141–159CrossRefGoogle Scholar
  45. Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210CrossRefGoogle Scholar
  46. Pelé A, Falque M, Trotoux G et al (2017) Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas. PLoS Genet 1:20.  https://doi.org/10.1371/journal.pgen.1006794 CrossRefGoogle Scholar
  47. Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073CrossRefPubMedGoogle Scholar
  48. Rieseberg LH, Baird SJ, Gardner KA (2000) Hybridization, introgression, and linkage evolution. Plant Mol Biol 42:205–224CrossRefPubMedGoogle Scholar
  49. Ruel JJ, Walker MA (2006) Resistance to Pierce’s disease in Muscadinia rotundifolia and other native grape species. Am J Enol Vitic 57:158–165Google Scholar
  50. Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Töpfer R (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176CrossRefPubMedGoogle Scholar
  51. Singh RJ, Nelson RL (2015) Intersubgeneric hybridization between Glycine max and G. tomentella: production of F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants. Theor Appl Genet 128:1117–1136CrossRefPubMedGoogle Scholar
  52. Troggio M, Malacarne G, Coppola G et al (2007) A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs. Genetics 176:2637–2650CrossRefPubMedPubMedCentralGoogle Scholar
  53. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0: software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  54. Wan Y, Schwaninger HR, Baldo AM, Labate JA, Zhong GY, Simon CJ (2013) A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogene and quaternary climate change. BMC Evolut Biol 13:141CrossRefGoogle Scholar
  55. Wiedemann-Merdinoglu S, Prado E, Coste P, Dumas V, Butterlin G, Bouquet A, Merdinoglu D (2006) Genetic analysis of resistance to downy mildew from Muscadinia rotundifolia. In: 9th international conference on grape genetics and breeding, Udine, ItalyGoogle Scholar
  56. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics.  https://doi.org/10.1093/bioinformatics/btq057 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wulff BB, Moscou MJ (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci 5:692CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang J, Hausmann L, Eibach R, Welter LJ, Töpfer R, Zyprian EM (2009) A framework map from grapevine V3125 (Vitis vinifera ‘Schiava grossa’ × ‘Riesling’) × rootstock cultivar ‘Börner’ (Vitis riparia × Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor Appl Genet 119:1039–1051CrossRefPubMedGoogle Scholar
  59. Zheng X, Hoegenauer KA, Quintana J, Bell AA, Hulse-Kemp AM, Nichols RL, Stelly DM (2016) SNP-based MAS in cotton under depressed-recombination for Renlon-Flanking recombinants: results and inferences on wide-cross breeding strategies. Crop Sci 56:1526–1539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SVQV UMR-A 1131, INRAUniversité de StrasbourgColmarFrance
  2. 2.Direction des Formations DoctoralesAgroParisTechParisFrance

Personalised recommendations