Advertisement

Theoretical and Applied Genetics

, Volume 132, Issue 2, pp 543–553 | Cite as

Construction of introgression lines of Oryza rufipogon and evaluation of important agronomic traits

  • Guannan Qin
  • Hung Manh Nguyen
  • Sinh Ngoc Luu
  • Yanwei Wang
  • Zhiguo ZhangEmail author
Original Article

Abstract

Cultivated rice (Oryza sativa) originated from common wild rice (Oryza rufipogon) and inherited its advantages. However, during the rice domestication process, some valuable features of wild rice, such as tolerance to biotic and abiotic stress, were lost. To fully utilize wild rice germplasm resources, we constructed a set of introgression lines (ILs) using a common wild rice material from Lingshui, China. A set of high-resolution InDel molecular markers with an average interval of 2.39 Mb were designed to carry out marker-assisted selection and identification of segment characteristics. The ILs contained 77 lines including 1.286 introgressed fragments with an average length of 6.511 Mb, covering 93.59% of the donor parent’s chromosomes. The agricultural traits of 77 lines were investigated. Many old quantitative trait loci (QTLs) involved in plant height, awn length, seed traits and other characteristics reappeared in our ILs, proving that our system was reliable. Further, many new QTLs were identified. A QTL related to drought tolerance located on chromosome 4 was thoroughly elaborated. This set of ILs provides a new resource for utilizing the excellent features of wild rice.

Notes

Acknowledgements

Funding was provided by CAAS Innovation Project (Grant No. CAAS-XTCX2016002) and Fundamental Research Funds for central Non-profit scientific Institution (Grant No. 1610392018004)

Supplementary material

122_2018_3241_MOESM1_ESM.tif (3.7 mb)
Figure S1 The plant stature comparison between LSWR and 9311 (TIFF 3830 kb)
122_2018_3241_MOESM2_ESM.tif (449 kb)
Figure S2 The workflow of IL construction. The workflow of constructing an ideal population of ILs. In the first step, LSWR selected from Lingshui City, China, was treated as “female” and 9311 was treated as “male.” After 7 generations of backcrossing or selfing, the chromosomes from LSWR were introgressed into the 9311 background (TIFF 448 kb)
122_2018_3241_MOESM3_ESM.tif (66.7 mb)
Figure S3 The physical map based on InDel markers. The markers were named after chromosome No. and physical location. The number before the dash indicates the chromosome No., and the number after the dash multiplied by 100,000 indicates the approximate physical distance (bp). (TIFF 68306 kb)
122_2018_3241_MOESM4_ESM.tif (2.9 mb)
Figure S4 The Q-PCR analysis for the NAL1 gene expression level. A. Comparison of the NAL1 gene expression level among 9311, No. 28 and No. 63. B. Comparison of the NAL1 gene expression level between Nipponbare (Nip) and Ov1 (TIFF 3002 kb)
122_2018_3241_MOESM5_ESM.xlsx (26 kb)
Table S1 InDel primers used in this study (XLSX 25 kb)
122_2018_3241_MOESM6_ESM.xlsx (20 kb)
Table S2 The agricultural trait data of 77 ILs (XLSX 19 kb)
122_2018_3241_MOESM7_ESM.xls (19 kb)
Table S3 The primers related to the Nal1 gene (XLS 19 kb)

References

  1. Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu JZ, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA 108:11034-11039CrossRefGoogle Scholar
  2. Bessho-Uehara K, Wang DR, Furuta T, Minami A, Nagai K, Gamuyao R, Asano K, Angeles-Shim RB, Shimizu Y, Ayano M, Komeda N, Doi K, Miura K, Toda Y, Kinoshita T, Okuda S, Higashiyama T, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y, Greenberg A, Wu J, Yasui H, Yoshimura A, Mori H, McCouch SR, Ashikari M (2016) Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proc Natl Acad Sci USA 113:8969-8974CrossRefGoogle Scholar
  3. Chen ML, Luo J, Shao GN, Wei XJ, Tang SQ, Sheng ZH, Song J, Hu PS (2012) Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Plant Cell Rep 31:863–872CrossRefGoogle Scholar
  4. Ding XP, Li XK, Xiong LZ (2011) Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice. Theor Appl Genet 123:815–826CrossRefGoogle Scholar
  5. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321CrossRefGoogle Scholar
  6. Du B, Zhang WL, Liu BF, Hu J, Wei Z, Zy S, He RF, Zhu LL, Chen RZ, Han B, He GC (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106:22163–22168CrossRefGoogle Scholar
  7. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171CrossRefGoogle Scholar
  8. Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, Paszkowski U, Zhang SP, Colbert M, Sun WL, Chen LL, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome Oryza sativa L. ssp. japonica. Science 296:92–100CrossRefGoogle Scholar
  9. Gu KY, Yang B, Tian DS, Wu L, Wang DJ, Sreekala C, Yang F, Chu ZQ, Wang GL, White FF, Yin ZC (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125CrossRefGoogle Scholar
  10. Gu BG, Zhou TY, Luo JH, Liu H, Wang YC, Shangguan YY, Zhu JJ, Li Y, Sang T, Wang ZX, Han B (2015) An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant 8:1635–1650CrossRefGoogle Scholar
  11. Hua L, Wang DR, Tan LB, Fu YC, Liu FX, Xiao LT, Zhu ZF, Fu Q, Sun XY, Gu P, Cai HW, McCouch SR, Sun CQ (2015) LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell 27:1875–1888CrossRefGoogle Scholar
  12. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497CrossRefGoogle Scholar
  13. Huang WC, Yu CC, Hu J, Wang LL, Dan ZW, Zhou W, He CL, Zeng YF, Yao GX, Qi JZ, Zhang ZH, Zhu RS, Chen XF, Zhu YG (2015) Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proc Natl Acad Sci 112:14984–14989CrossRefGoogle Scholar
  14. Jeung JU, Kim BR, Cho YC, Han SS, Moon HP, Lee YT, Jena KK (2007) A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet 115:1163–1177CrossRefGoogle Scholar
  15. Jin J, Hua L, Zhu ZF, Tan LB, Zhao XH, Zhang WF, Liu FX, Fu YC, Cai HW, Sun XY, Gu P, Xie DX, Sun CQ (2016) GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell 28:2453–2463CrossRefGoogle Scholar
  16. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefGoogle Scholar
  17. Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan JX, Gao JP, Lin HX (2015) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47:827–833CrossRefGoogle Scholar
  18. Luo DP, Xu H, Liu ZL, Guo JX, Li HY, Chen LT, Fang C, Zhang QY, Bai M, Yao N, Wu H, Wu H, Ji CH, Zheng HQ, Chen YL, Ye S, Li X, Zhao XC, Li RQ, Liu YG (2013a) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577CrossRefGoogle Scholar
  19. Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, Zhu J, Li Y, Zhao Y, Wang Y, Zhao Q, Wang A, Wang Z, Sang T, Wang Z, Han B (2013b) An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25:3360–3376CrossRefGoogle Scholar
  20. Qi J, Qian Q, Bu QY, Li SY, Chen Q, Sun JQ, Liang WX, Zhou YH, Chu CC, Li XG, Ren FG, Palme K, Zhao BR, Chen JF, Chen MS, Li CY (2008) Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147:1947–1959CrossRefGoogle Scholar
  21. Qiao W, Qi L, Cheng Z, Su L, Li J, Sun Y, Ren J, Zheng X, Yang Q (2016) Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the genetic background of O. sativa spp. indica cultivar 9311. BMC Genom 17:580CrossRefGoogle Scholar
  22. Qiu YF, Guo JP, Jing SL, Zhu LL, He GC (2012) Development and characterization of japonica rice lines carrying the brown planthopper-resistance genes BPH12 and BPH6. Theor Appl Genet 124:485–494CrossRefGoogle Scholar
  23. Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site–leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914CrossRefGoogle Scholar
  24. Reuscher S, Furuta T (2016) ABHgenotypeR: Easy Visualization of ABH GenotypesGoogle Scholar
  25. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci 95:1460–1465CrossRefGoogle Scholar
  26. Song WY, Wang GL, Chen LL, Kim H, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806CrossRefGoogle Scholar
  27. Surzycki S (2000) Preparation of genomic DNA from plant cells. Basic techniques in molecular biology. Springer, Berlin, pp 57–78CrossRefGoogle Scholar
  28. Tanabata T, Shibaya T, Hori K, Ebana K, Yano M (2012) SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol 160:1871–1880CrossRefGoogle Scholar
  29. Thalapati S, Batchu AK, Neelamraju S, Ramanan R (2012) Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice. Funct Integr Genom 12:277–289CrossRefGoogle Scholar
  30. Wang E, Wang J, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W, Lu BR, Lin HX, Ma H, Zhang GQ, He ZH (2008a) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374CrossRefGoogle Scholar
  31. Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W, Lu BR, Lin HX, Ma H, Zhang GQ, He ZH (2008b) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374CrossRefGoogle Scholar
  32. Wang CL, Zhang XP, Fan YL, Gao Y, Zhu QL, Zheng CK, Qin TF, Li YQ, Che JY, Zhang MW, Yang B, Liu YG, Zhao KJ (2015a) XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant 8:290–302CrossRefGoogle Scholar
  33. Wang SK, Li S, Liu Q, Wu K, Zhang JQ, Wang SS, Wang Y, Chen XB, Zhang Y, Gao CX, Wang F, Huang HX, Fu XD (2015b) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949–954CrossRefGoogle Scholar
  34. Wang YX, Xiong GS, Hu J, Jiang L, Yu H, Xu J, Fang YX, Zeng LJ, Xu EB, Xu J, Ye WJ, Meng XB, Liu RF, Chen HQ, Jing YH, Wang YH, Zhu XD, Li JY, Qian Q (2015c) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948CrossRefGoogle Scholar
  35. Wu W, Liu X, Wang M, Meyer RS, Luo X, Ndjiondjop M-N, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing RA, Zhu Z (2017) A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants 3:17064CrossRefGoogle Scholar
  36. Xiao JH, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li JM, Yuan LP (1996) Genes from wild rice improve yield. Nature 384:223–224CrossRefGoogle Scholar
  37. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708CrossRefGoogle Scholar
  38. Xu F, Fang J, Ou S, Gao S, Zhang F, Du L, Xiao Y, Wang H, Sun X, Chu J, Wang G, Chu C (2015) Variations in CYP78A13 coding region influence grain size and yield in rice. Plant Cell Environ 38:800–811CrossRefGoogle Scholar
  39. Yang HY, You AQ, Yang ZF, Zhang FT, He RF, Zhu LL, He GC (2004a) High-resolution genetic mapping at the Bph15 locus for brown planthopper resistance in rice (Oryza sativa L.). Theor Appl Genet 110:182–191CrossRefGoogle Scholar
  40. Yang YZ, Peng H, Huang HM, Wu JX, Jia SR, Huang DF, Lu TG (2004b) Large-scale production of enhancer trapping lines for rice functional genomics. Plant Sci 167:281–288CrossRefGoogle Scholar
  41. Yoshida S, Forno DA, Cock JH, Gomez KA (1971) Laboratory manual for physiological studies of rice, 3rd edn. The International Rice Research Institute, Los BaÑosGoogle Scholar
  42. Young ND, Tanksley SD (1989) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77:95–101CrossRefGoogle Scholar
  43. Yu J, Hu SN, Wang J, Wong GK-S, Li SG, Liu B, Deng YJ, Dai L, Zhou Y, Zhang XQ, Cao ML, Liu J, Sun JD, Tang JB, Chen YJ, Huang XB, Lin W, Ye C, Tong W, Cong LJ, Geng JN, Han YJ, Li L, Li W, Hu GQ, Huang XG, Li WJ, Li J, Liu ZW, Li L, Liu JP, Qi QH, Liu JS, Li L, Li T, Wang XG, Lu H, Wu TT, Zhu M, Ni PX, Han H, Dong W, Ren XY, Feng XL, Cui P, Li XR, Wang H, Xu X, Zhai WX, Xu Z, Zhang JS, He S, Zhang JG, Xu JC, Zhang KL, Zheng XW, Dong JH, Zeng WY, Tao L, Ye J, Tan J, Ren XD, Chen XW, He J, Liu DF, Tian W, Tian CG, Xia HA, Bao QY, Li G, Gao H, Cao T, Wang J, Zhao WM, Li P, Chen W, Wang XD, Zhang Y, Hu JF, Wang J, Liu S, Yang J, Zhang GY, Xiong YQ, Li ZJ, Mao L, Zhou CS, Zhu Z, Chen RS, Hao BL, Zheng WM, Chen SY, Guo W, Li GJ, Liu SQ, Tao M, Wang J, Zhu LH, Yuan LP, Yang HM (2002) A draft sequence of the rice genome Oryza sativa L. ssp. indica. Science 296:79–92CrossRefGoogle Scholar
  44. Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Tang S, Gu M, Liang G (2009) Deletion in a quantitative trait gene qpe9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183:315–324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guannan Qin
    • 1
    • 2
    • 3
  • Hung Manh Nguyen
    • 1
  • Sinh Ngoc Luu
    • 1
  • Yanwei Wang
    • 1
  • Zhiguo Zhang
    • 1
    Email author
  1. 1.Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene ImprovementThe Chinese Academy of Agricultural SciencesBeijingChina
  2. 2.Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations