Advertisement

Theoretical and Applied Genetics

, Volume 132, Issue 2, pp 489–500 | Cite as

Dissecting the genetics underlying the relationship between protein content and grain yield in a large hybrid wheat population

  • Patrick Thorwarth
  • Guozheng Liu
  • Erhard Ebmeyer
  • Johannes Schacht
  • Ralf Schachschneider
  • Ebrahim Kazman
  • Jochen Christoph Reif
  • Tobias Würschum
  • Carl Friedrich Horst LonginEmail author
Original Article

Abstract

Key message

Additive and dominance effect QTL for grain yield and protein content display antagonistic pleiotropic effects, making genomic selection based on the index grain protein deviation a promising method to alleviate the negative correlation between these traits in wheat breeding.

Abstract

Grain yield and quality-related traits such as protein content and sedimentation volume are key traits in wheat breeding. In this study, we used a large population of 1604 hybrids and their 135 parental components to investigate the genetics and metabolomics underlying the negative relationship of grain yield and quality, and evaluated approaches for their joint improvement. We identified a total of nine trait-associated metabolites and show that prediction using genomic data alone resulted in the highest prediction ability for all traits. We dissected the genetic architecture of grain yield and quality-determining traits and show results of the first mapping of the derived trait grain protein deviation. Further, we provide a genetic analysis of the antagonistic relation of grain yield and protein content and dissect the mode of gene action (pleiotropy vs linkage) of identified QTL. Lastly, we demonstrate that the composition of the training set for genomic prediction is crucial when considering different quality classes in wheat breeding.

Notes

Acknowledgements

We acknowledge the funding of the German Federal Ministry of Food and Agriculture (Grant FKZ0103010) which supported the work within the ZUCHTWERT Project and the German Federal Ministry of Education and Research within the HYWHEAT project (Grant FKZ0315945D).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The authors declare that the experiments comply with the current laws of Germany.

Supplementary material

122_2018_3236_MOESM1_ESM.docx (674 kb)
Supplementary material 1 (DOCX 673 kb)
122_2018_3236_MOESM2_ESM.pdf (167 kb)
Supplementary material 2 (PDF 166 kb)
122_2018_3236_MOESM3_ESM.xlsx (10 kb)
Supplementary material 3 (XLSX 10 kb)
122_2018_3236_MOESM4_ESM.xlsx (927 kb)
Supplementary material 4 (XLSX 926 kb)
122_2018_3236_MOESM5_ESM.xlsx (13 kb)
Supplementary material 5 (XLSX 13 kb)

References

  1. Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36.  https://doi.org/10.1016/j.plantsci.2015.08.021 CrossRefGoogle Scholar
  2. Bogard M, Allard V, Martre P, Heumez E, Snape JW, Orford S, Griffiths S, Gaju O, Foulkes J, Le Gouis J (2013) Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations. Mol Breed 31:587–599.  https://doi.org/10.1007/s11032-012-9817-5 CrossRefGoogle Scholar
  3. Calus MPL, Veerkamp RF (2011) Accuracy of multi-trait genomic selection using different methods. Genet Sel Evol 43:26.  https://doi.org/10.1186/1297-9686-43-26 CrossRefGoogle Scholar
  4. Chen Y, Lübberstedt T (2010) Molecular basis of trait correlations. Trends Plant Sci 15:454–461.  https://doi.org/10.1016/j.tplants.2010.05.004 CrossRefGoogle Scholar
  5. Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11:e0156744.  https://doi.org/10.1371/journal.pone.0156744 CrossRefGoogle Scholar
  6. Fernandez O, Urrutia M, Bernillon S, Giauffret C, Tardieu F, Le Gouis J, Langlade N, Charcosset A, Moing A, Gibon Y (2016) Fortune telling: metabolic markers of plant performance. Metabolomics 12:158.  https://doi.org/10.1007/s11306-016-1099-1 CrossRefGoogle Scholar
  7. Galesloot TE, van Steen K, Kiemeney LALM, Janss LL, Vermeulen SH (2014) A comparison of multivariate genome-wide association methods. PLoS ONE 9:e95923.  https://doi.org/10.1371/journal.pone.0095923 CrossRefGoogle Scholar
  8. Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml user guide release 3.0. VSN International Ltd., Hemel HempsteadGoogle Scholar
  9. Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040.  https://doi.org/10.1007/s00122-002-1111-1 CrossRefGoogle Scholar
  10. Jia Y, Jannink J-L (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192:1513–1522.  https://doi.org/10.1534/genetics.112.144246 CrossRefGoogle Scholar
  11. Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127Google Scholar
  12. Jiang Y, Schmidt RH, Zhao Y, Reif JC (2017) A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat Genet 49:1741–1746.  https://doi.org/10.1038/ng.3974 CrossRefGoogle Scholar
  13. Laidig F, Piepho H-P, Rentel D, Drobek T, Meyer U, Huesken A (2017) Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on-farm during 1983–2014. Theor Appl Genet 130:223–245.  https://doi.org/10.1007/s00122-016-2810-3 CrossRefGoogle Scholar
  14. Laidig F, Piepho H-P, Hüsken A, Begemann J, Rentel D, Drobek T, Meyer U (2018) Predicting loaf volume for winter wheat by linear regression models based on protein concentration and sedimentation value using samples from VCU trials and mills. J Cereal Sci.  https://doi.org/10.1016/j.jcs.2018.07.015 Google Scholar
  15. Liu G, Zhao Y, Gowda M, Longin CFH, Reif JC, Mette MF (2016) Predicting hybrid performances for quality traits through genomic-assisted approaches in Central European wheat. PLoS ONE 11:e0158635.  https://doi.org/10.1371/journal.pone.0158635 CrossRefGoogle Scholar
  16. Longin CFH, Gowda M, Mühleisen J, Ebmeyer E, Kazman E, Schachschneider R, Schacht J, Kirchhoff M, Zhao Y, Reif JC (2013) Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theor Appl Genet 126:2791–2801.  https://doi.org/10.1007/s00122-013-2172-z CrossRefGoogle Scholar
  17. Matros A, Liu G, Hartmann A, Jiang Y, Zhao Y, Wang H, Ebmeyer E, Korzun V, Schachschneider R, Kazman E, Schacht J, Longin F, Reif JC, Mock H-P (2017) Genome–metabolite associations revealed low heritability, high genetic complexity, and causal relations for leaf metabolites in winter wheat (Triticum aestivum). J Exp Bot 68:415–428.  https://doi.org/10.1093/jxb/erw441 Google Scholar
  18. Michel S, Kummer C, Gallee M, Hellinger J, Ametz C, Akgöl B, Epure D, Güngör H, Löschenberger F, Buerstmayr H (2018) Improving the baking quality of bread wheat by genomic selection in early generations. Theor Appl Genet 131:477–493.  https://doi.org/10.1007/s00122-017-2998-x CrossRefGoogle Scholar
  19. Monaghan JM, Snape JW, Chojecki AJS, Kettlewell PS (2001) The use of grain protein deviation for identifying wheat cultivars with high grain protein concentration and yield. Euphytica 122:309–317.  https://doi.org/10.1023/A:1012961703208 CrossRefGoogle Scholar
  20. Oury F-X, Godin C (2007) Yield and grain protein concentration in bread wheat: how to use the negative relationship between the two characters to identify favourable genotypes? Euphytica 157:45–57.  https://doi.org/10.1007/s10681-007-9395-5 CrossRefGoogle Scholar
  21. Oury FX, Bérad P, Brancourt-Hulmel M, Depatureaux C, Doussinault G, Galic N, Giraud A, Heumez E, Lecomte C, Pluchard P, Rolland B, Rousset M, Trottet M (2003) Yield and grain protein concentration in breed wheat: a review and a study of multi-annual data from a French breeding program. J Genet Breed 57:59–68Google Scholar
  22. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  23. Ravier C, Meynard J-M, Cohan J-P, Gate P, Jeuffroy M-H (2017) Early nitrogen deficiencies favor high yield, grain protein content and N use efficiency in wheat. Eur J Agron 89:16–24.  https://doi.org/10.1016/j.eja.2017.06.002 CrossRefGoogle Scholar
  24. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220.  https://doi.org/10.1038/ng.1033 CrossRefGoogle Scholar
  25. Rozbicki J, Ceglińska A, Gozdowski D, Jakubczak M, Cacak-Pietrzak G, Mądry W, Golba J, Piechociński M, Sobczyński G, Studnicki M, Drzazga T (2015) Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat. J Cereal Sci 61:126–132.  https://doi.org/10.1016/j.jcs.2014.11.001 CrossRefGoogle Scholar
  26. Saint-Pierre A, Kaufman J-M, Ostertag A, Cohen-Solal M, Boland A, Toye K, Zelenika D, Lathrop M, de Vernejoul M-C, Martinez M (2011) Bivariate association analysis in selected samples: application to a GWAS of two bone mineral density phenotypes in males with high or low BMD. Eur J Hum Genet 19:710–716.  https://doi.org/10.1038/ejhg.2011.22 CrossRefGoogle Scholar
  27. Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489.  https://doi.org/10.1146/annurev.arplant.043008.092035 CrossRefGoogle Scholar
  28. Schulthess AW, Reif JC, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Ganal MW, Röder MS, Jiang Y (2017) The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat (Triticum aestivum L.). J Exp Bot 68:4089–4101.  https://doi.org/10.1093/jxb/erx214 CrossRefGoogle Scholar
  29. Simmonds NW (1995) The relation between yield and protein in cereal grain. J Sci Food Agric 67:309–315.  https://doi.org/10.1002/jsfa.2740670306 CrossRefGoogle Scholar
  30. Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50:1171.  https://doi.org/10.2307/2533455 CrossRefGoogle Scholar
  31. Terman GL, Ramig RE, Dreier AF, Olson RA (1969) Yield–protein relationships in wheat grain, as affected by nitrogen and water. Agron J 61:755–759CrossRefGoogle Scholar
  32. Thorwarth P, Piepho HP, Zhao Y, Ebmeyer E, Schacht J, Schachschneider R, Kazman E, Reif JC, Würschum T, Longin CFH (2018) Higher grain yield and higher grain protein deviation underline the potential of hybrid wheat for a sustainable agriculture. Plant Breed 129:787.  https://doi.org/10.1111/pbr.12588 Google Scholar
  33. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, Nguyen-Viet TA, Wedow R, Zacher M, Furlotte NA, Magnusson P, Oskarsson S, Johannesson M, Visscher PM, Laibson D, Cesarini D, Neale BM, Benjamin DJ (2018) Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet 50:229–237.  https://doi.org/10.1038/s41588-017-0009-4 CrossRefGoogle Scholar
  34. Uauy C, Brevis JC, Dubcovsky J (2006) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794.  https://doi.org/10.1093/jxb/erl047 CrossRefGoogle Scholar
  35. Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849Google Scholar
  36. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M-C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796.  https://doi.org/10.1111/pbi.12183 CrossRefGoogle Scholar
  37. Wei J, Wang A, Li R, Qu H, Jia Z (2018) Metabolome-wide association studies for agronomic traits of rice. Heredity 120:342–355.  https://doi.org/10.1038/s41437-017-0032-3 CrossRefGoogle Scholar
  38. Williams E, Piepho H-P, Whitaker D (2011) Augmented p-rep designs. Biom J 53:19–27.  https://doi.org/10.1002/bimj.201000102 CrossRefGoogle Scholar
  39. Würschum T, Langer SM, Longin CFH, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif JC (2013) Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet 126:1477–1486.  https://doi.org/10.1007/s00122-013-2065-1 CrossRefGoogle Scholar
  40. Würschum T, Leiser WL, Kazman E, Longin CFH (2016) Genetic control of protein content and sedimentation volume in European winter wheat cultivars. Theor Appl Genet 129:1685–1696.  https://doi.org/10.1007/s00122-016-2732-0 CrossRefGoogle Scholar
  41. Zhao Y, Gowda M, Würschum T, Longin CFH, Korzun V, Kollers S, Schachschneider R, Zeng J, Fernando R, Dubcovsky J, Reif JC (2013) Dissecting the genetic architecture of frost tolerance in Central European winter wheat. J Exp Bot 64:4453–4460.  https://doi.org/10.1093/jxb/ert259 CrossRefGoogle Scholar
  42. Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP, Würschum T, Mock H-P, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin CFH, Reif JC (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci USA 112:15624–15629.  https://doi.org/10.1073/pnas.1514547112 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Plant Breeding InstituteUniversity of HohenheimStuttgartGermany
  2. 2.BASF Agricultural Solutions Seed GmbHSeelandGermany
  3. 3.KWS LOCHOW GmbHBergenGermany
  4. 4.Limagrain GmbHPeine-RosenthalGermany
  5. 5.Nordsaat Saatzuchtgesellschaft mbHLangensteinGermany
  6. 6.Syngenta GmbHHadmerslebenGermany
  7. 7.Department of Breeding ResearchLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations