Advertisement

Theoretical and Applied Genetics

, Volume 132, Issue 2, pp 355–370 | Cite as

Mapping of the male sterile mutant gene ftms in Brassica rapa L. ssp. pekinensis via BSR-Seq combined with whole-genome resequencing

  • Chong Tan
  • Zhiyong Liu
  • Shengnan Huang
  • Hui FengEmail author
Original Article

Abstract

Key message

A male sterile mutant was created by 60Co γ-rays of microspores isolated from Chinese cabbage DH line ‘FT’. A candidate gene for the male sterile trait was identified as Bra010198.

Abstract

Male sterility is used for hybrid seed production in Chinese cabbage. In this study, we derived a male sterile mutant (ftms) from Chinese cabbage DH line ‘FT’ by irradiating microspores with 60Co γ-rays and realized the rapid trait transformation from male fertility to sterility for creating valuable breeding materials. Genetic analysis indicated that the male sterile trait is controlled by a single recessive nuclear gene, ftms. Microspore development in mutant ftms was aborted at the tetrad stage and associated with severely retarded degeneration and vacuolation of tapetum. Using BSR-seq analysis, the candidate region for ftms was mapped on chromosome A05. A large F2 population was created, and the region was narrowed to approximately 1.7-Mb between markers Indel20 and Indel14 via linkage analysis. The recombination frequency was extremely suppressed because the region was located on the chromosome A05 centromere. Whole-genome resequencing of mutant ftms and wild-type ‘FT’ aligned only one nonsynonymous SNP to Bra010198; this gene is a homolog of Arabidopsis KNS4/UPEX1, which encodes a putative β-(1,3)-galactosyltransferase that controls pollen exine development. Comparative sequencing verified the SNP position on the fifth exon of Bra010198 in mutant ftms. Further genotyping revealed that the male sterile phenotype was fully co-segregated with this SNP. Quantitative real-time PCR indicated that Bra0101918 specifically expressed in stamen. The data presented herein suggested that Bra010198 is a strong candidate gene for ftms. Hence, we developed a male sterile line for potential application in breeding and expanded the knowledge about the molecular mechanism underlying male sterility in Chinese cabbage.

Notes

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (No. 31730082). We would like to thank Editage for English language editing. We also would like thank GENEWIZ and LC Bio for sequencing.

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical standards

The authors note that this study was performed and reported in accordance with the ethical standards of scientific conduct.

Supplementary material

122_2018_3223_MOESM1_ESM.pdf (923 kb)
Supplementary material 1 (PDF 923 kb)
122_2018_3223_MOESM2_ESM.pdf (145 kb)
Supplementary material 2 (PDF 145 kb)

References

  1. Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K (2004) Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39(2):170–181CrossRefGoogle Scholar
  2. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120CrossRefGoogle Scholar
  3. Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12(20):1718–1727CrossRefGoogle Scholar
  4. Chang HS, Zhang C, Chang YH, Zhu J, Xu XF, Shi ZH, Zhang XL, Xu L, Huang H, Zhang S, Yang ZN (2012) No primexine and plasma membrane undulation is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis. Plant Physiol 158(1):264–272CrossRefGoogle Scholar
  5. Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet 23(2):81–90CrossRefGoogle Scholar
  6. Chen L, Liu Y (2014) Male sterility and fertility restoration in crops. Ann Rev Plant Biol 65(1):579–606CrossRefGoogle Scholar
  7. Chen X, Hedley PE, Jenny M, Liu H, Niks RE, Robbie W (2011) Combining genetical genomics and bulked segregant analysis-based differential expression: an approach to gene localization. Theor Appl Genet 122(7):1375–1383CrossRefGoogle Scholar
  8. Chen X, Zhang H, Sun H, Luo H, Zhao L, Dong Z, Yan S, Zhao C, Liu R, Xu C, Li S, Chen H, Jin W (2017) IRREGULAR POLLEN EXINE1 is as novel factor in anther cuticle and pollen exine formation. Plant Physiol 173(1):307–325CrossRefGoogle Scholar
  9. Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25(5):1541–1554CrossRefGoogle Scholar
  10. Cheng Q, Wang P, Liu J, Wu L, Zhang Z,  Li T, Gao W, Yang W, Sun L, Shen H (2018) Identification of candidate genes underlying genic male-sterile msc-1 locus via genome resquencing in Capsicum annuum L. Theor Appl Genet.  https://doi.org/10.1007/s00122-018-3119-1 Google Scholar
  11. Choi H, Jin JY, Choi S, Hwang JU, Kim YY, Suh MC, Lee Y (2011) An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J 65(2):181–193CrossRefGoogle Scholar
  12. Coimbra S, Jones B, Pereira LG (2008) Arabinogalactan proteins (AGPs) related to pollen tube guidance into the embryo sac in Arabidopsis. Plant Signal Behav 3(7):455–456CrossRefGoogle Scholar
  13. Coimbra S, Costa M, Jones B, Mendes MA, Pereira LG (2009) Pollen grain development is compromised in Arabidopsis agp6agp11 null mutants. J Exp Bot 60(11):3133–3142CrossRefGoogle Scholar
  14. Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, McCombie WR, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286(5449):2468–2474CrossRefGoogle Scholar
  15. Doan TT, Carlsson AS, Hamberg M, Beulow L, Stymme S, Olsson P (2009) Functional expression of five Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli. J Plant Physiol 166(8):787–796CrossRefGoogle Scholar
  16. Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Møller BL, Preuss D (2009) CYP704B1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151(2):574–589CrossRefGoogle Scholar
  17. Dobritsa AA, Lei Z, S-i Nishikawa, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW (2010) LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis thaliana. Plant Physiol 153(3):937–955CrossRefGoogle Scholar
  18. Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DP (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42(3):315–328CrossRefGoogle Scholar
  19. Du H, Zhu J, Su H, Huang M, Wang H, Ding S, Zhang B, Luo A, Wei S, Tian X, Xu Y (2017) Bulked segregant RNA-seq reveals differential expression and SNPs of candidate genes associated with waterlogging tolerance in Maize. Front Plant Sci 8:1022CrossRefGoogle Scholar
  20. Dun X, Zhou Z, Xia S, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2011) BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J 68(3):532–545CrossRefGoogle Scholar
  21. Feng H, Wei P, Piao ZY, Liu ZY, Li CY, Wang YG, Ji RQ, Ji SJ, Zou T, Choi SR, Lim YP (2009) SSR and SCAR mapping of a multiple-allele male-sterile gene in Chinese cabbage (Brassica rapa L.). Theor Appl Genet 119(2):333–339CrossRefGoogle Scholar
  22. Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147(2):852–863CrossRefGoogle Scholar
  23. Hord CL, Chen C, Deyoung BJ, Clark SE, Ma H (2006) The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell 18(7):1667–1680CrossRefGoogle Scholar
  24. Huang SN, Liu ZY, Li DY, Yao RP, Meng Q, Feng H (2014) Screening of Chinese cabbage mutant produced by 60Co-ray mutagenesis of isolated microspore cultures. Plant Breed 133:480–488CrossRefGoogle Scholar
  25. Irish V (2017) The ABC model of foral development. Curr Biol 27(17):R887–R890CrossRefGoogle Scholar
  26. Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430(6997):356–360CrossRefGoogle Scholar
  27. Ji JL, Yang LM, Fang ZY, Zhuang M, Zhang YY, Lv HH, Liu YM, Li ZS (2017) Recessive male sterility in cabbage (Brassica oleracea var. capitata) caused by loss of function of BoCYP704B1 due to the insertion of a LTR-retrotransposon. Theor Appl Genet 130(7):1441–1451CrossRefGoogle Scholar
  28. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360CrossRefGoogle Scholar
  29. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  30. Lee YP, Cho Y, Kim S (2014) A high-resolution linkage map of the Rfd1, a restorer-of-fertility locus for cytoplasmic analysis and RNA-Seq. Theor Appl Genet 127(10):2243–2252CrossRefGoogle Scholar
  31. Lei S, Yao X, Yi B, Chen W, Ma C, Tu J, Fu T (2007) Towards map-based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Gen 115(5):643–651CrossRefGoogle Scholar
  32. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760CrossRefGoogle Scholar
  33. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(14):2078–2079CrossRefGoogle Scholar
  34. Li J, Hong D, He J, Ma L, Wan L, Liu P, Yang G (2012) Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Theor Appl Genet 125(2):223–234CrossRefGoogle Scholar
  35. Li L, Li D, Liu S, Ma X, Dietrich CR (2013) The mazie glossy13 gene, cloned via BSA-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS ONE 8(12):e82333CrossRefGoogle Scholar
  36. Liang Q, Wen D, Xie J, Liu L, Wei Y, Wang Y, Shi S (2014) A rapid and effective method for silver staining of PCR products separate in polyacrylamide gels. Electrophoresis 35(17):2520–2523CrossRefGoogle Scholar
  37. Liang JL, Ma Y, Wu J, Cheng F, Liu B, Wang XW (2017) Map-based cloning of the dominant genic male sterile Ms-cd1 gene in cabbage (Brassica oleracea). Theor Appl Genet 130(1):71–79CrossRefGoogle Scholar
  38. Lin S, Dong H, Zhang F, Qiu L, Wang FZ, Cao JS, Huang L (2014) BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Ann Bot Lond 113(5):777–788CrossRefGoogle Scholar
  39. Liu SZ, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-seq (BSR-seq). PLoS ONE 7(5):e36406CrossRefGoogle Scholar
  40. Livaja M, Wang Y, Wieckhorst S, Haseneyer G, Seidel M, Hahn V, Knapp SJ, Taudien S, Schön CC, Bauer E (2013) BSTAsta: a targeted approach combines bulked segregant analysis with next-generation sequencing and de novo transcriptome assembly for SNP discovery in sunflower. BMC Genom 14:628–738CrossRefGoogle Scholar
  41. Lu W, Liu J, Xin Q, Wan L, Hong D, Yang G (2013) A triallelic genetic male sterility locus in Brassica napus: an integrative strategy for its physical mapping and possible local chromosome evolution around it. Ann Bot 111(2):305–315CrossRefGoogle Scholar
  42. Ma H (2005) Molecular genetic analysis of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434CrossRefGoogle Scholar
  43. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Bioinform Action 17:10–12Google Scholar
  44. Millar AA, Gublera F (2005) The Arabidopsis GAMYB-Like Genes, MYB33 and MYB 65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17(3):705–721CrossRefGoogle Scholar
  45. Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19(5):1473–1487CrossRefGoogle Scholar
  46. Nestler J, Liu S, Wen TJ, Pachold A, Marcon C, Tang HM, Li D, Li L, Meeley RB, Sakai H, Bruce W, Schnable PS, Hochholdinger F (2014) Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase. Plant J 79(9):729–740CrossRefGoogle Scholar
  47. Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA (2001) DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol 127(4):1739–1749CrossRefGoogle Scholar
  48. Qin LX, Chen Y, Zeng W, Li Y, Gao L, Li DD, Bacic A, Xu WL, Li XB (2017) The cotton β-galactosyltransferase 1 (GalT1) that galactosylates arabinogalactan proteins participates in controlling fiber development. Plant J 89(5):957–971CrossRefGoogle Scholar
  49. Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2015) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13(5):613–624CrossRefGoogle Scholar
  50. Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu Y-C, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322CrossRefGoogle Scholar
  51. Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci 96(20):11664–11669CrossRefGoogle Scholar
  52. Schnurr J, Shockey J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant cell 16(3):629–642CrossRefGoogle Scholar
  53. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:46–60CrossRefGoogle Scholar
  54. Singh K, Ishii T, Parco A, Huang N, Brar DS, Khush GS (1996) Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.). Proc Natl Acad Sci USA 93(12):6163–6168CrossRefGoogle Scholar
  55. Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33(2):413–423CrossRefGoogle Scholar
  56. Su A, Song W, Xing J, Zhao Y, Zhang R, Li C, Duan M, Luo M, Shi Z, Zhao J (2016) Identification of genes potentially associated with the fertility instability of S-type cytoplasmic male sterility in maize via bulked segregant RNA-Seq. PLoS ONE 11(9):e0163489CrossRefGoogle Scholar
  57. Sun Y, Wang J, Crouch JH, Xu Y (2010) Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed 26:493–511CrossRefGoogle Scholar
  58. Suzuki T, Narciso JO, Zeng W, van de Meene A, Yasutomi M, Takemura S, Lampugnani ER, Doblin MS, Bacic A, Ishiguro S (2017) KNS4/UPEX1: a type II arabinogalactan β-(1,3)-galactosyltransferase required for pollen exine development. Plant Physiol 173(1):183–205CrossRefGoogle Scholar
  59. Tan L, Qiu F, Lamport DTA, Kieliszewski MJ (2004) Structure of a hydroxyproline (Hyp)-Arabinogalactan polysaccharide form repetitive Ala-Hyp expressed in transgenic Nicotiana tabacum. J Biol Chem 279(13):13156–13165CrossRefGoogle Scholar
  60. Teng C, Du D, Xiao L, Yu Q, Shang G, Zhao Z (2017) Mapping and identifying a candidate gene (Bnmfs) for female-male sterility through whole-genome resequencing and RNA-seq in rapeseed (Brassica napu L.). Front Plant Sci 8:2086CrossRefGoogle Scholar
  61. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822CrossRefGoogle Scholar
  62. Van Ooijen J (2006) Joinmap 4.0 software for the calculation of genetic linkage maps in experimental populations. Wageningen, Kyazma BVGoogle Scholar
  63. Vedel F, Pla M, Vitart V, Gutierres S, Chetrit P, De Paepe R (1994) Molecular basis of nuclear and cytoplasmic male sterility in higher plants. Plant Physiol Biochem 32(5):601–618Google Scholar
  64. Vizcay-Bareena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57(11):2709–2717CrossRefGoogle Scholar
  65. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164CrossRefGoogle Scholar
  66. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IA, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039CrossRefGoogle Scholar
  67. Wang D, Skibbe DS, Walbot V (2013) Maize Male sterile 8 (Ms8), a putative β-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. Plant Reprod 26(4):329–338CrossRefGoogle Scholar
  68. Wang N, Liu ZY, Zhang Y, Li CY, Feng H (2017a) Identification and fine mapping of a stay-green gene (Brnye1) in pakchoi (Brassica campestris L. ssp. chinensis). Theor Appl Genet 131(3):673–684CrossRefGoogle Scholar
  69. Wang Y, Xie J, Zhang H, Guo B, Ning S, Chen Y, Lu P, Wu Q, Li M, Zhang D, Guo G, Zhang Y, Liu D, Zou S, Tang J, Zhao H, Wang X, Li J, Yang W, Cao T, Yin G, Liu Z (2017b) Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130(10):2191–2201CrossRefGoogle Scholar
  70. Wilson ZA, Song J, Taylor B, Yang C (2011) The final split: the regulation of anther dehiscence. J Exp Bot 62(5):1633–1649CrossRefGoogle Scholar
  71. Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo DH, Shi J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG (2009) Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet 5(11):e1000743CrossRefGoogle Scholar
  72. Wu P, Xie J, Hu J, Qiu D, Liu Z, Li J, Li M, Zhang H, Yang L, Liu H, Zhou Y, Zhang Z, Li H (2018) Development of molecular markers linked to powdery mildew resistance gene Pm4b by combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat. Front Plant Sci 9:95CrossRefGoogle Scholar
  73. Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13(16):2108–2117CrossRefGoogle Scholar
  74. Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC, Jiang L, Sundaresan V, Ye D (2003) Tapetum determinant1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15(2):2792–2804CrossRefGoogle Scholar
  75. Yi B, Chen Y, Lei S, Tu J, Fu T (2006) Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet 113(4):643–650CrossRefGoogle Scholar
  76. Yi B, Zeng FQ, Lei SL, Chen YN, Yao XQ, Zhu Y, Wen J, Shen JX, Ma CZ, Tu JX, Fu TD (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are for pollen exine formation and tapetal development in Brassica napus. Plant J 63(6):925–938CrossRefGoogle Scholar
  77. Zeng X, Li W, Wu Y, Liu F, Luo J, Cao Y, Zhu L, Li Y, Li J, You Q, Wu G (2014) Fine mapping of a dominant thermo-sensitive genic male sterility gene (BntsMs) in rapeseed (Brassica napus) with AFLP-and Brassica rapa-derived PCR markers. Theor Appl Genet 127(8):1733–1740CrossRefGoogle Scholar
  78. Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133(16):3085–3095CrossRefGoogle Scholar
  79. Zhang W, Cao Y, Wang K, Zhao T, Chen J, Pan M, Wang Q, Feng S, Guo W, Zhou B, Zhang T (2014) Identification of centromeric regions on the linkage map of cotton using centromere-related repeats. Genomics 104(6):587–593CrossRefGoogle Scholar
  80. Zhao DZ, Wang GF, Speal B, Ma H (2002) The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16(15):2021–2031CrossRefGoogle Scholar
  81. Zhao C, Zhao G, Geng Z, Wang Z, Wang K, Liu S, Zhang H, Guo B, Geng J (2018) Physical mapping and candidate gene prediction of fertility restorer gene of cytoplasmic male sterility in cotton. BMC Genom 19(1):6CrossRefGoogle Scholar
  82. Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, LiuZ Chen L, Liu YG, Zhuang C (2012a) Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22(4):649–660CrossRefGoogle Scholar
  83. Zhou Z, Dun X, Xia S, Shi D, Qin M, Yi B, Wen J, Shen J, Ma C, Tu J, Fu T (2012b) BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. J Exp Bot 63(5):2041–2058CrossRefGoogle Scholar
  84. Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, Dong J, Liu Q, Gu L, Zhou L, Feng M, Qin P, Hu X, Song C, Shi J, Song X, Ni E, WuX Deng Q, Liu Z, Chen M, Liu YG, Cao X, Zhuang C (2014) RNase Z (S1) processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun 5:4884CrossRefGoogle Scholar
  85. Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008) Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J 55(2):266–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of HorticultureShenyang Agricultural UniversityShenyangPeople’s Republic of China

Personalised recommendations