Theoretical and Applied Genetics

, Volume 132, Issue 1, pp 137–147 | Cite as

Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived ‘Norton’

  • Surya Sapkota
  • Li-Ling Chen
  • Shanshan Yang
  • Katie E. Hyma
  • Lance Cadle-Davidson
  • Chin-Feng HwangEmail author
Original Article


Key message

A major QTL for downy mildew resistance was detected on chromosome 18 (Rpv27) in Vitis aestivalis-derived ‘Norton’ based on a high-resolution linkage map with SNP and SSR markers as well as 2 years of field and laboratory phenotyping data.


Grapevine downy mildew caused by the oomycete Plasmopara viticola is one of the most widespread and destructive diseases, particularly in humid viticultural areas where it damages green tissues and defoliates vines. Traditional Vitis vinifera wine grape cultivars are susceptible to downy mildew whereas several North American and a few Asian cultivars possess various levels of resistance to this disease. To identify genetic determinants of downy mildew resistance in V. aestivalis-derived ‘Norton,’ a mapping population with 182 genotypes was developed from a cross between ‘Norton’ and V. vinifera ‘Cabernet Sauvignon’ from which a consensus map was constructed via 411 simple sequence repeat (SSR) markers. Using genotyping-by-sequencing, 3825 single nucleotide polymorphism (SNP) markers were also generated. Of these, 1665 SNP and 407 SSR markers were clustered into 19 linkage groups in 159 genotypes, spanning a genetic distance of 2203.5 cM. Disease progression in response to P. viticola was studied in this population for 2 years under both laboratory and field conditions, and strong correlations were observed among data sets (Spearman correlation coefficient = 0.57–0.79). A quantitative trait loci (QTL) analysis indicated a resistance locus on chromosome 18, here named Rpv27, explaining 33.8% of the total phenotypic variation. Flanking markers closely linked with the trait can be further used for marker-assisted selection in the development of new cultivars with resistance to downy mildew.



The authors thank S. Jacob Schneider, Marilyn Odneal and Kevin Fort for valuable discussions and constructive comments on the manuscript. This project was supported by Agriculture and Food Research Initiative Competitive Grant, Award No. 2013-67014-21360, and Specialty Crop Research Initiative Competitive Grant, Award No. 2011-51181-30635, of the USDA National Institute of Food and Agriculture.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Adhikari P, Chen L-L, Chen X, Sapkota SD, Hwang C-F (2014) Interspecific hybrid identification of Vitis aestivalis-derived ‘Norton’-based populations using microsatellite markers. Sci Hort 179:363–366CrossRefGoogle Scholar
  2. Akkurt M, Welter L, Maul E, Töpfer R, Zyprian E (2007) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.). Mol Breed 19:103–111CrossRefGoogle Scholar
  3. Ambers CP (2013) A historical hypothesis on the origin of the Norton grape. J Wine Res 24:85–95CrossRefGoogle Scholar
  4. Ball AD, Stapley J, Dawson DA, Birkhead TR, Burke T, Slate J (2010) A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genom 11:218CrossRefGoogle Scholar
  5. Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S, Hyma K, Reisch B (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84CrossRefGoogle Scholar
  6. Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon A-F, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localized necrosis at the infection site. Theor Appl Genet 120:163–176CrossRefGoogle Scholar
  7. Bernet GP, Fernandez Ribacoba J, Carbonell EA, Asins MJ (2010) Comparative genome-wide segregation analysis and map construction using a reciprocal cross design to facilitate citrus germplasm utilization. Mol Breed 25:659–673CrossRefGoogle Scholar
  8. Bielenberg DG, Rauh B, Fan S, Gasic K, Abbott AG, Reighard GL, Okie WR, Wells CE (2015) Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. PLoS One 10:e0139406CrossRefGoogle Scholar
  9. Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663–1675CrossRefGoogle Scholar
  10. Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Rühl EH, Mestre P, Merdinoglu D (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123:43–53CrossRefGoogle Scholar
  11. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefGoogle Scholar
  12. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890CrossRefGoogle Scholar
  13. Brown MV, Moore JN, Fenn P, McNew RW (1999) Comparison of leaf disk, greenhouse, and field screening procedures for evaluation of grape seedlings for downy mildew resistance. HortScience 34:331–333Google Scholar
  14. Cadle-Davidson L (2008) Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis 92:1577–1584CrossRefGoogle Scholar
  15. Cadle-Davidson L, Gadoury D, Fresnedo-Ramírez J, Yang S, Barba P, Sun Q, Kasinathan H (2016) Lessons from a phenotyping center revealed by the genome-guided mapping of powdery mildew resistance loci. Phytopathology 106:1159–1169CrossRefGoogle Scholar
  16. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Rev Genet 12:499CrossRefGoogle Scholar
  17. Di Gaspero G, Copetti D, Coleman C, Castellarin SD, Eibach R, Kozma P, Kovács L (2012) Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet 124:277–286CrossRefGoogle Scholar
  18. Diez-Navajas AM, Wiedemann-Merdinoglu S, Greif C, Merdinoglu D (2008) Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level. Phytopathology 98:776–780CrossRefGoogle Scholar
  19. Divilov K, Barba P, Cadle-Davidson L, Reisch RI (2018) Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor Appl Genet 131:1133–1143CrossRefGoogle Scholar
  20. Doligez A, Adam-Blondon A-F, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith C, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382CrossRefGoogle Scholar
  21. Edwards D, Forster JW, Cogan NOI, Batley J, Chagné D (2007) Chapter 4: single nucleotide polymorphism discovery in plants. In: Oraguzie NC, Rikkerink E, Gardiner SE, De Silva NH (eds) Association mapping in plants. Springer, New York, pp 53–76CrossRefGoogle Scholar
  22. Einset J, Pratt C (1975) Grapes. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 130–153Google Scholar
  23. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379CrossRefGoogle Scholar
  24. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515CrossRefGoogle Scholar
  25. Ganal MW, Polley A, Graner EM, Plieske J, Wieseke R, Luerssen H, Durstewitz G (2012) Large SNP arrays for genotyping in crop plants. J Biol Sci 37:821–828Google Scholar
  26. Hammers M, Sapkota S, Chen L-L, Hwang C-F (2017) Constructing a genetic linkage map of Vitis aestivalis-derived “Norton” and its use in comparing Norton and Cynthiana. Mol Breed 37:64CrossRefGoogle Scholar
  27. He J, Zhao X, Laroche A, Lu Z-X, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484CrossRefGoogle Scholar
  28. Heath MC, Skalamera D (1997) Cellular interactions between plants and biotrophic fungal parasites. Adv Bot Res 24:195–225CrossRefGoogle Scholar
  29. Huang Y-F, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS ONE 9:e102448CrossRefGoogle Scholar
  30. Hyma KE, Barba P, Wang M, Londo JP, Acharya CB, Mitchell SE, Sun Q, Reisch B, Cadle-Davidson L (2015) Heterozygous mapping strategy (HetMappS) for high resolution genotyping-by-sequencing markers: a case study in grapevine. PLoS ONE 10:e0134880CrossRefGoogle Scholar
  31. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Vezzi A (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463CrossRefGoogle Scholar
  32. Jürges G, Kassemeyer HH, Dürrenberger M, Düggelin M, Nick P (2009) The mode of interaction between Vitis and Plasmopara viticola Berk. & Curt. Ex de Bary depends on the host species. Plant Biol 11:886–898CrossRefGoogle Scholar
  33. Kono A, Sato A, Reisch B, Cadle-Davidson L (2015) Effect of detergent on the quantification of grapevine downy mildew sporangia from leaf discs. HortScience 50:656–660Google Scholar
  34. Kortekamp A, Zyprian E (1999) Leaf hairs as a basic protective barrier against downy mildew of grape. J Phytopathol 147:453–459CrossRefGoogle Scholar
  35. Langcake P, Lovell E (1980) Light and electron microscopical studies of the infection of Vitis spp. by Plasmopara viticola, the downy mildew pathogen. Vitis 19:321–337Google Scholar
  36. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760CrossRefGoogle Scholar
  37. Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Némorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278CrossRefGoogle Scholar
  38. Merdinoglu D, Wiedeman-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hort 603:451–456CrossRefGoogle Scholar
  39. Moreira FM, Madini A, Marino R, Zulini L, Stefanini M, Velasco R, Kozma P, Grando MS (2011) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet Genomes 7:153–167CrossRefGoogle Scholar
  40. Ochssner I, Hausmann L, Töpfer R (2016) Rpv14, a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea. Vitis 55:79–81Google Scholar
  41. Ollitrault P, Terol J, Chen C, Federici CT, Lotfy S, Hippolyte I, Costantino G (2012) A reference genetic map of C. clementina hort. ex Tan,; citrus evolution inferences from comparative mapping. BMC Genom 13:593CrossRefGoogle Scholar
  42. Polesani M, Bortesi L, Ferrarini A, Zamboni A, Fasoli M, Zadra C, Lovato A, Pezzotti M, Delledonne M, Polverari A (2010) General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genom 11:117CrossRefGoogle Scholar
  43. Pootakham W, Ruang-Areerate P, Jomchai N, Sonthirod C, Sangsrakru D, Yoocha T, Theerawattanasuk K, Nirapathpongporn K, Romruensukharom P, Tragoonrung S (2015) Construction of a high-density integrated genetic linkage map of rubber tree (Hevea brasiliensis) using genotyping-by-sequencing (GBS). Front Plant Sci 6:367CrossRefGoogle Scholar
  44. Sawler J, Reisch B, Aradhya MK, Prins B, Zhong GY, Schwaninger H, Simon C, Buckler E, Myles S (2013) Genomics assisted ancestry deconvolution in grape. PLoS ONE 8:e80791CrossRefGoogle Scholar
  45. Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Töpfer R (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176CrossRefGoogle Scholar
  46. Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, McCouch S (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699–2716CrossRefGoogle Scholar
  47. van Heerden CJ, Burger P, Vermeulen A, Prins R (2014) Detection of downy and powdery mildew resistance QTL in a ‘Regent’ × ‘RedGlobe’ population. Euphytica 200:281–295CrossRefGoogle Scholar
  48. van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  49. van Ooijen JW (2009) MapQTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, WageningenGoogle Scholar
  50. Venuti S, Copetti D, Foria S, Falginella L, Hoffmann S, Bellin D, Cindrić P, Kozma P, Scalabrin S, Morgante M (2013) Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS ONE 8:e61228CrossRefGoogle Scholar
  51. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefGoogle Scholar
  52. VIVC (2018) Table of Loci for Traits in Grapevine Relevant for Breeding and Genetics.
  53. Wang H, Misztal I, Aguilar I, Legarra A, Muir WM (2012) Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res 94:73–83CrossRefGoogle Scholar
  54. Wang L, Wan ZY, Bai B, Huang SQ, Chua E, Lee M, Pang HY, Wen YF, Liu P, Liu F, Sun F, Lin G, Ye BQ, Yue GH (2015) Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass. Sci Rep 5:16358CrossRefGoogle Scholar
  55. Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson J, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genom 14:2CrossRefGoogle Scholar
  56. Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374CrossRefGoogle Scholar
  57. Wiedemann-Merdinoglu S, Prado E, Coste P, Dumas V, Butterlin G, Bouquet A, Merdinoglu D (2006) Genetic analysis of resistance to downy mildew from Muscadinia rotundifolia. In: 9th international conference on grape genetics and breeding 2006Google Scholar
  58. Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X (2013) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141CrossRefGoogle Scholar
  59. Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genom 15:351CrossRefGoogle Scholar
  60. Zyprian E, Ochssner I, Schwander F, Šimon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Grando MS, Wiedemann-Merdinoglu S, Merdinoglu D, Eibach R, Töpfer R (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Genet Genomics 291:1573–1594CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Surya Sapkota
    • 1
    • 2
    • 6
  • Li-Ling Chen
    • 1
  • Shanshan Yang
    • 3
  • Katie E. Hyma
    • 4
  • Lance Cadle-Davidson
    • 5
  • Chin-Feng Hwang
    • 1
    Email author
  1. 1.State Fruit Experiment Station at Mountain Grove Campus, Darr College of AgricultureMissouri State UniversitySpringfieldUSA
  2. 2.Division of Plant SciencesUniversity of MissouriColumbiaUSA
  3. 3.Bioinformatics Core Facility, The Biodesign InstituteArizona State UniversityTempeUSA
  4. 4.Bioinformatics Facility, Institute of BiotechnologyCornell UniversityIthacaUSA
  5. 5.USDA-ARS Grape Genetics Research UnitGenevaUSA
  6. 6.Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, NYS Agricultural Experiment StationCornell UniversityGenevaUSA

Personalised recommendations