Theoretical and Applied Genetics

, Volume 131, Issue 12, pp 2513–2528 | Cite as

Resistance to Rhynchosporium commune in a collection of European spring barley germplasm

  • Mark E. LooseleyEmail author
  • Lucie L. Griffe
  • Bianca Büttner
  • Kathryn M. Wright
  • Jill Middlefell-Williams
  • Hazel Bull
  • Paul D. Shaw
  • Malcolm Macaulay
  • Allan Booth
  • Günther Schweizer
  • Joanne R. Russell
  • Robbie Waugh
  • William T. B. Thomas
  • Anna Avrova
Original Article


Key message

Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1.


Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.



We thank the IMPROMALT consortium for making the germplasm collection as well as the genotypic and historical phenotypic data available for this study and the BSPB and the AHDB Cereals and Oilseeds division for the provision of the National and Recommended List data. We also thank Richard Keith, Chris Warden, Dave Guy and Alfred Barth for all their technical help in this work. This work was funded by the Scottish Government Rural and Environment Science and Analytical Services (RESAS) and the Bavarian State Ministry of Food, Agriculture and Forestry and the BMBF under Grant-no 031B0199D. MEL and WTBT were also funded by the BBSRC IMPROMALT project BB/J019593/1. LLG was funded by the BBSRC training Grant (BB/K501906/1). AA was also funded by the BBSRC-CIRC project BB/J019569/1.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

122_2018_3168_MOESM1_ESM.tif (49.8 mb)
Figure S1 A Principal Component Analysis plot of the genotypic data from the 601 genotyped lines used in this study, showing scores for the first two principal components. Figures in brackets following the axis labels indicate the percentage of the total genotypic variation accounted for by the corresponding principal component (TIFF 50953 kb)
122_2018_3168_MOESM2_ESM.tif (50.3 mb)
Figure S2 Representative images showing infection types in both of the controlled environment tests used in this study. The upper two panels show resistant a and susceptible b interactions as determined by detached leaf assay and confocal microscopy at 2 days post-inoculation (dpi) with a GFP expressing Rhynchosporium commune isolate (T‐R214‐GFP). Green colour represents GFP fluorescence and shows fungal spores and hyphae, with blue colour showing chlorophyll auto-fluorescence. Resistant interactions typically show germinated spores, less extensive hyphal networks, with random growth directions, whilst resistant lines show much more extensive growth following the anticlinal wall of the epidermal cells. The lower panel c shows representative leaves illustrating the 0–4 scale used to quantify symptom expression 16 dpi of 3-week-old barley seedlings with a 2 × 105 spores/ml suspension of R. commune. 0 represents an absence of visible disease symptoms (not shown), and 4 represents total collapse and drying-out of the entire leaf. Leaves with score of 2 and higher were considered susceptible (TIFF 51460 kb)
122_2018_3168_MOESM3_ESM.xlsx (9 kb)
Table S1 Details of the field trials conducted for the GWAS analyses. For each trial, the dimensions of the plot and sowing rates are indicated along with the date that the trial was sown. The dates are shown for each of the phenotypic assessments (XLSX 9 kb)
122_2018_3168_MOESM4_ESM.xlsx (58 kb)
Table S2 Details of the lines used in the GWAS experiments. The name is indicated along with the AFP code and year that the line was first entered for National List trialling (NL1) where known. AUDPC scores are indicated for each of the disease nursery trials as well as the Recommended List/National List (RL/NL) mean (XLSX 59 kb)


  1. Abang MM, Baum M, Ceccarelli S, Grando S, Linde CC, Yahyaoui AH, Zhan J, McDonald BA (2006) Pathogen evolution in response to host resistance genes: evidence from fields experiments with Rhynchosporium secalis on barley. Phytopathology 96:S2CrossRefGoogle Scholar
  2. Abbott DC, Brown AHD, Burdon JJ (1992) Genes for scald resistance from wild barley (Hordeum vulgare Ssp Spontaneum) and their linkage to isozyme markers. Euphytica 61:225–231CrossRefGoogle Scholar
  3. Abbott DC, Lagudah ES, Brown AHD (1995) Identification of RFLPs flanking a scald resistance gene on barley chromosome 6. J Hered 86:152–154CrossRefGoogle Scholar
  4. Ariyadasa R, Mascher M, Nussbaumer T, Schulte D, Frenkel Z, Poursarebani N, Zhou R, Steuernagel B, Gundlach H, Taudien S, Felder M, Platzer M, Himmelbach A, Schmutzer T, Hedley PE, Muehlbauer GJ, Scholz U, Korol A, Mayer KFX, Waugh R, Langridge P, Graner A, Stein N (2014) A sequence-ready physical map of barley anchored genetically by two million single-nucleotide polymorphisms. Plant Physiol 164:412–423CrossRefGoogle Scholar
  5. Arvidsson J (1998) Effects of cultivation depth in reduced tillage on soil physical properties, crop yield and plant pathogens. Eur J Agron 9:79–85CrossRefGoogle Scholar
  6. Avrova A, Knogge W (2012) Rhynchosporium commune: a persistent threat to barley cultivation. Mol Plant Pathol 13:986–997CrossRefGoogle Scholar
  7. Backes G, Graner A, Foroughiwehr B, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 90:294–302CrossRefGoogle Scholar
  8. Bjørnstad Å, Patil V, Tekauz A, Marøy AG, Skinnes H, Jensen A, Magnus H, MacKey J (2002) Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines: I. Markers and differential isolates. Phytopathology 92:710–720CrossRefGoogle Scholar
  9. Carisse KX, Burnett PA, Tewari JP, Chen MH, Turkington TK, Helm JH (2000) Histopathological study of barley cultivars resistant and susceptible to Rhynchosporium secalis. Phytopathology 90:94–102CrossRefGoogle Scholar
  10. Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, Powell W, O’Sullivan DM (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16CrossRefGoogle Scholar
  11. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392CrossRefGoogle Scholar
  12. Davis H, Fitt BDL (1992) Seasonal changes in primary and secondary inoculum during epidemics of leaf blotch (Rhynchosporium secalis) on winter barley. Ann Appl Biol 121:39–49CrossRefGoogle Scholar
  13. Elen O (2002) Plant protection in spring cereal production with reduced tillage III. Cereal diseases. Crop Prot 21:195–201CrossRefGoogle Scholar
  14. Fitt BDL, Mccartney HA, Creighton NF, Lacey ME, Walklate PJ (1988) Dispersal of Rhynchosporium secalis conidia from infected barley leaves or straw by simulated rain. Ann Appl Biol 112:49–59CrossRefGoogle Scholar
  15. Fitt BD, Atkins SD, Fraaije BA, Lucas JA, Newton AC, Looseley ME, Werner P, Harrap D, Ashworth M, Southgate J, Phillips H, Gilchrist A (2010) Role of inoculum sources in Rhynchosporium population dynamics and epidemiology on barley. HGCA final report. Project number RD-2004-3099Google Scholar
  16. Garvin DF, Brown AHD, Raman H, Read BJ (2000) Genetic mapping of the barley Rrs14 scald resistance gene with RFLP, isozyme and seed storage protein markers. Plant Breed 119:193–196CrossRefGoogle Scholar
  17. Genger R, Williams KJ, Raman H, Read BJ, Wallwork H, Burdon J, Brown A (2003) Leaf scald resistance genes in Hordeum vulgare and Hordeum vulgare ssp. spontaneum: parallels between cultivated and wild barley. Aust J Agric Res 54:1335–1342CrossRefGoogle Scholar
  18. Genger RK, Nesbitt K, Brown AHD, Abbott DC, Burdon JJ (2005) A novel barley scald resistance gene: genetic mapping of the Rrs15 scald resistance gene derived from wild barley, Hordeum vulgare ssp spontaneum. Plant Breed 124:137–141CrossRefGoogle Scholar
  19. Grønnerød S, Marøy AG, MacKey J, Tekauz A, Penner GA, Bjørnstad A (2002) Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line `Abyssinian’ (CI668). Euphytica 126:235–250CrossRefGoogle Scholar
  20. Hahn M, Jungling S, Knogge W (1993) Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis. Mol Plant Microbe Interact 6:745–754CrossRefGoogle Scholar
  21. Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS (2009) Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119:1507–1522CrossRefGoogle Scholar
  22. Hofmann K, Silvar C, Casas AM, Herz M, Büttner B, Gracia MP, Contreras-Moreira B, Wallwork H, Igartua E, Schweizer G (2013) Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theor Appl Genet 126:3091–3102CrossRefGoogle Scholar
  23. Jackson LF, Webster RK (1976) Race differentiation, distribution, and frequency of Rhynchosporium-secalis in California. Phytopathology 66:719–725CrossRefGoogle Scholar
  24. Kari AG, Griffiths E (1993) Components of partial resistance of barley to Rhynchosporium secalis: use of seedling tests to predict field resistance. Ann Appl Biol 123:545–561CrossRefGoogle Scholar
  25. Khan T, Crosbie G (1988) Effect of scald (Rhynchosporium secalis (Oud.) J. Davis) infection on some quality characteristics of barley. Aust J Exp Agric 28:783–785CrossRefGoogle Scholar
  26. Kirsten S, Navarro-Quezada A, Penselin D, Wenzel C, Matern A, Leitner A, Baum T, Seiffert U, Knogge W (2012) Necrosis-inducing proteins of Rhynchosporium commune, effectors in quantitative disease resistance. Mol Plant Microbe Interact 25:1314–1325CrossRefGoogle Scholar
  27. Lehnackers H, Knogge W (1990) Cytological studies on the infection of barley cultivars with known resistance genotypes by Rhynchosporium secalis. Can J Bot 68:1953–1961CrossRefGoogle Scholar
  28. Looseley ME, Newton AC, Atkins SD, Fitt BDL, Fraaije BA, Thomas WTB, Keith R, Macaulay M, Lynott J, Harrap D (2012) Genetic basis of control of Rhynchosporium secalis infection and symptom expression in barley. Euphytica 184:47–56CrossRefGoogle Scholar
  29. Looseley ME, Keith R, Guy D, Barral-Baron G, Thirugnanasambandam A, Harrap D, Werner P, Newton AC (2015) Genetic mapping of resistance to Rhynchosporium commune and characterisation of early infection in a winter barley mapping population. Euphytica 203:337–347CrossRefGoogle Scholar
  30. Malosetti M, van Eeuwijk FA, Boer MP, Casas AM, Elía M, Moralejo M, Bhat PR, Ramsay L, Molina-Cano J-L (2011) Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theor Appl Genet 122:1605–1616CrossRefGoogle Scholar
  31. Marzin S, Hanemann A, Sharma S, Hensel G, Kumlehn J, Schweizer G, Röder MS (2016) Are pectin esterase inhibitor genes involved in mediating resistance to Rhynchosporium commune in barley? PLoS ONE 11:e0150485CrossRefGoogle Scholar
  32. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433CrossRefGoogle Scholar
  33. Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454CrossRefGoogle Scholar
  34. Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716CrossRefGoogle Scholar
  35. Moragues M, Comadran J, Waugh R, Milne I, Flavell AJ, Russell JR (2010) Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data. Theor Appl Genet 120:1525–1534CrossRefGoogle Scholar
  36. Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249CrossRefGoogle Scholar
  37. Newton AC, Searle J, Guy DC, Hackett CA, Cooke DEL (2001) Variability in pathotype, aggressiveness, RAPD profile, and rDNA ITS1 sequences of UK isolates of Rhynchosporium secalis. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-J Plant Dis Protect 108:446–458Google Scholar
  38. Oliver RP, Ipcho SV (2004) Arabidopsis pathology breathes new life into the necrotrophs-versus-biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347–352CrossRefGoogle Scholar
  39. Patil V, Bjørnstad Å, Mackey J (2003) Molecular mapping of a new gene Rrs4CI 11549 for resistance to barley scald (Rhynchosporium secalis). Mol Breed 12:169–183CrossRefGoogle Scholar
  40. Perfect SE, Green JR (2001) Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol 2:101–108CrossRefGoogle Scholar
  41. Pickering R, Ruge-Wehling B, Johnston PA, Schweizer G, Ackermann P, Wehling P (2006) The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed 125:576–579CrossRefGoogle Scholar
  42. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29CrossRefGoogle Scholar
  43. Richards JK, Friesen TL, Brueggeman RS (2017) Association mapping utilizing diverse barley lines reveals net form net blotch seedling resistance/susceptibility loci. Theor Appl Genet 130:915–927CrossRefGoogle Scholar
  44. Rohe M, Gierlich A, Hermann H, Hahn M, Schmidt B, Rosahl S, Knogge W (1995) The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. EMBO J 14:4168–4177CrossRefGoogle Scholar
  45. Schürch S, Linde CC, Knogge W, Jackson LF, McDonald BA (2004) Molecular population genetic analysis differentiates two virulence mechanisms of the fungal avirulence gene NIP1. Mol Plant Microbe Interact 17:1114–1125CrossRefGoogle Scholar
  46. Schweizer GF, Baumer M, Daniel G, Rugel H, Roder MS (1995) RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90:920–924CrossRefGoogle Scholar
  47. Schweizer G, Herz M, Mikolajewski S, Brenner M, Hartl L, Baumer M (2004) Genetic mapping of a novel scald resistance gene Rrs15CI8288 in barley. In: Proceedings of the 9th international barley genetics symposium, Brno, Czech Republic, pp 258–265Google Scholar
  48. Schweizer P, Stein N (2011) Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Mol Plant Microbe Interact 24:1492–1501CrossRefGoogle Scholar
  49. Simko I, Piepho HP (2012) The area under the disease progress stairs: calculation, advantage, and application. Phytopathology 102:381–389CrossRefGoogle Scholar
  50. Taggart PJ, Locke T, Phillips AN, Pask N, Hollomon DW, Kendall SJ, Cooke LR, Mercer PC (1999) Benzimidazole resistance in Rhynchosporium secalis and its effect on barley leaf blotch control in the UK. Crop Protect 18:239–243CrossRefGoogle Scholar
  51. Tamang P, Neupane A, Mamidi S, Friesen T, Brueggeman R (2015) Association mapping of seedling resistance to spot form net blotch in a worldwide collection of barley. Phytopathology 105:500–508CrossRefGoogle Scholar
  52. Thirugnanasambandam A, Wright KM, Atkins SD, Whisson SC, Newton AC (2011) Infection of Rrs1 barley by an incompatible race of the fungus Rhynchosporium secalis expressing the green fluorescent protein. Plant Pathol 60:513–521CrossRefGoogle Scholar
  53. Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR, Lance RCM (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047PubMedGoogle Scholar
  54. Thomas W, Comadran J, Ramsay L, Shaw P, Marshall D, Newton AC, O’Sullivan DM, Cockram J, Mackay IJ, Bayles R, White J, Kearsey M, Luo Z, Wang M, Tapsell C, Harrap D, Werner P, Klose S, Bury P, Wroth J, Argillier O, Habgood R, Glew M, Bochard A-M, Gymer P, Vequaud D, Christerson T, Allvin B, Davies N, Broadbent R, Brosnan J, Bringhurst T, Booer C, Waugh R (2014) Project Report No. 528: association genetics of UK elite barley (AGOUEB). HGCAGoogle Scholar
  55. Tondelli A, Xu X, Moragues M, Sharma R, Schnaithmann F, Ingvardsen C, Manninen O, Comadran J, Russell J, Waugh R, Schulman AH, Pillen K, Rasmussen SK, Kilian B, Cattivelli L, Thomas WTB, Flavell AJ (2013) Structural and temporal variation in genetic diversity of European spring two-row barley cultivars and association mapping of quantitative traits. Plant Genome. CrossRefGoogle Scholar
  56. Tottman DR (1987) The decimal code for the growth stages of cereals, with illustrations. Ann Appl Biol 110:441–454CrossRefGoogle Scholar
  57. van’t Slot KA, Gierlich A, Knogge W (2007) A single binding site mediates resistance-and disease-associated activities of the effector protein NIP1 from the barley pathogen Rhynchosporium secalis. Plant Physiol 144:1654–1666CrossRefGoogle Scholar
  58. VSN International (2011) Genstat for windows, 14th edn. VSN International, Hemel HempsteadGoogle Scholar
  59. Wagner C, Schweizer G, Kramer M, Dehmer-Badani AG, Ordon F, Friedt W (2008) The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet 118:113–122. CrossRefPubMedGoogle Scholar
  60. Walters DR, Avrova A, Bingham IJ, Burnett FJ, Fountaine J, Havis ND, Hoad SP, Hughes G, Looseley M, Oxley SJP, Renwick A, Topp CFE, Newton AC (2012) Control of foliar diseases in barley: towards an integrated approach. Eur J Plant Pathol 133:33–73CrossRefGoogle Scholar
  61. Waugh R, Flavell JA, Russell J, Thomas W, Ramsay L, Comadran J (2014) Exploiting barley genetic resources for genome wide association scans (GWAS). In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources, vol 1. Managing, sequencing and mining genetic resources. Springer, Dordrecht, pp 237–254CrossRefGoogle Scholar
  62. Williams RJ, Owen H (1975) Susceptibility of barley cultivars to leaf blotch and aggressiveness of Rhynchosporium secalis races. Trans Br. Mycol Soc 65:109–114CrossRefGoogle Scholar
  63. Xi K, Xue AG, Burnett PA, Helm JH, Turkington TK (2000) Quantitative resistance of barley cultivars to Rhynchosporium secalis. Can J Plant Pathol Rev Canadienne de Phytopathologie 22:217–223CrossRefGoogle Scholar
  64. Xu X, Sharma R, Tondelli A, Russell J, Comadran J, Schnaithmann F, Pillen K, Kilian B, Cattivelli L, Thomas WTB, Flavell AJ (2018) Genome-wide association analysis of grain yield-associated traits in a pan-European barley cultivar collection. Plant Genome. CrossRefPubMedGoogle Scholar
  65. Xue G, Hall R (1991) Components of parasitic fitness in Rhynchosporium secalis and quantitative resistance to scald in barley as determined with a dome inoculation chamber. Can J Plant Path 13:19–25CrossRefGoogle Scholar
  66. Yun S, Gyenis L, Bossolini E, Hayes P, Matus I, Smith K, Steffenson B, Tuberosa R, Muehlbauer G (2006) Validation of quantitative trait loci for multiple disease resistance in barley using advanced backcross lines developed with a wild barley. Crop Sci 46:1179–1186CrossRefGoogle Scholar
  67. Zaffarano PL, McDonald BA, Zala M, Linde CC (2006) Global hierarchical gene diversity analysis suggests the fertile crescent is not the center of origin of the barley scald pathogen Rhynchosporium secalis. Phytopathology 96:941–950CrossRefGoogle Scholar
  68. Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC (2008) Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathol 57:1–14Google Scholar
  69. Zhan J, Yang L, Zhu W, Shang L, Newton AC (2012) Pathogen populations evolve to greater race complexity in agricultural systems—evidence from analysis of Rhynchosporium secalis virulence data. PLoS ONE 7:e38611CrossRefGoogle Scholar
  70. Zhou H, Steffenson BJ, Muehlbauer G, Wanyera R, Njau P, Ndeda S (2014) Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. Theor Appl Genet 127:1293–1304CrossRefGoogle Scholar
  71. Ziems LA, Hickey LT, Hunt CH, Mace ES, Platz GJ, Franckowiak JD, Jordan DR (2014) Association mapping of resistance to Puccinia hordei in Australian barley breeding germplasm. Theor Appl Genet 127:1199–1212CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mark E. Looseley
    • 1
    Email author
  • Lucie L. Griffe
    • 1
    • 3
  • Bianca Büttner
    • 2
  • Kathryn M. Wright
    • 1
  • Jill Middlefell-Williams
    • 1
  • Hazel Bull
    • 1
    • 4
  • Paul D. Shaw
    • 1
  • Malcolm Macaulay
    • 1
  • Allan Booth
    • 1
  • Günther Schweizer
    • 2
  • Joanne R. Russell
    • 1
  • Robbie Waugh
    • 1
  • William T. B. Thomas
    • 1
  • Anna Avrova
    • 1
  1. 1.The James Hutton InstituteInvergowrie, DundeeUK
  2. 2.Bavarian State Research Center for AgricultureInstitute for Crop Science and Plant BreedingFreisingGermany
  3. 3.RAGT Seeds LtdSaffron WaldenUK
  4. 4.Syngenta UK LtdMarket RasenUK

Personalised recommendations