Advertisement

Theoretical and Applied Genetics

, Volume 131, Issue 10, pp 2021–2035 | Cite as

Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development

  • Youngjun Mo
  • Leonardo S. Vanzetti
  • Iago Hale
  • Emiliano J. Spagnolo
  • Fabio Guidobaldi
  • Jassim Al-Oboudi
  • Natalie Odle
  • Stephen Pearce
  • Marcelo Helguera
  • Jorge DubcovskyEmail author
Original Article

Abstract

Key message

This study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits.

Abstract

Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index. However, negative pleiotropic effects of these alleles (e.g., poor seedling emergence and reduced biomass) can cause yield losses in hot and dry environments. As part of current efforts to diversify the dwarfing alleles used in wheat breeding, we identified a quantitative trait locus (QHt.ucw-6AS) affecting plant height in the proximal region of chromosome arm 6AS (< 0.4 cM from the centromere). Using a large segregating population (~ 2800 gametes) and extensive progeny tests (70–93 plants per recombinant family), we mapped QHt.ucw-6AS as a Mendelian locus to a 0.2 cM interval (144.0–148.3 Mb, IWGSC Ref Seq v1.0) and show that it is different from Rht18. QHt.ucw-6AS is officially designated as Rht25, with Rht25a representing the height-increasing allele and Rht25b the dwarfing allele. The average dwarfing effect of Rht25b was found to be approximately half of the effect observed for Rht-B1b and Rht-D1b, and the effect is greater in the presence of the height-increasing Rht-B1a and Rht-D1a alleles than in the presence of the dwarfing alleles. Rht25b is gibberellin-sensitive and shows significant pleiotropic effects on coleoptile length, heading date, spike length, spikelet number, spikelet density, and grain weight. Rht25 represents a new alternative dwarfing locus that should be evaluated for its potential to improve wheat yield in different environments.

Notes

Acknowledgements

J. Dubcovsky acknowledges financial support for this project from the Agriculture and Food Research Initiative Competitive Grant 2017-67007-25939 (WheatCAP) from the USDA National Institute of Food and Agriculture, the International Wheat Yield Partnership (IWYP) and the Howard Hughes Medical Institute. L. Vanzetti acknowledges financial support from the ANPCyT (Prestamo BID 2014, PICT1283), and INTA (PNCyO 1127042). Y. Mo is a Howard Hughes Medical Institute’s International Student Research fellow and a Monsanto’s Beachell-Borlaug International scholar.

Author contribution statement

LSV and IH developed mapping populations and conducted initial QTL mapping experiments. EJS and FG conducted field experiments and QTL analyses. YM, JA, and NO conducted high-resolution mapping experiments and GA sensitivity essays. YM and LSV wrote the first manuscript. SP and MH contributed to data analyses and manuscript revision. JD initiated and coordinated the project, contributed to data analyses, provided extensive revision and wrote the final manuscript. All authors reviewed the manuscript and provided suggestions.

Compliance with ethical standards

Confict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This study does not include human or animal subjects.

Supplementary material

122_2018_3130_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1078 kb)
122_2018_3130_MOESM2_ESM.xlsx (32 kb)
Supplementary material 2 (XLSX 32 kb)

References

  1. Bazhenov MS, Divashuk MG, Amagai Y, Watanabe N, Karlov GI (2015) Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker. Mol Breed 35:213CrossRefGoogle Scholar
  2. Börner A, Worland AJ, Plaschke J, Schumann E, Law CN (1993) Pleiotropic effects of genes for reduced height (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breed 111:204–216CrossRefGoogle Scholar
  3. Börner A, Plaschke J, Korzun V, Worland AJ (1996) The relationships between the dwarfing genes of wheat and rye. Euphytica 89:69–75CrossRefGoogle Scholar
  4. Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder S, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borojevic K, Borojevic K (2005) The transfer and history of “reduced height genes” (Rht) in wheat from Japan to Europe. J Hered 96:455–459CrossRefGoogle Scholar
  6. Butler JD, Byrne PF, Mohammadi V, Chapman PL, Haley SD (2005) Agronomic performance of alleles in a spring wheat population across a range of moisture levels. Crop Sci 45:939–947CrossRefGoogle Scholar
  7. Cavanagh CR, Chao SM, Wang SC, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai GH, Pumphrey M, Tomar L, Wong DB, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062CrossRefGoogle Scholar
  8. Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52:946–951CrossRefGoogle Scholar
  9. Corbeil RR, Searle SR (1976) Restricted maximum likelihood (REML) estimation of variance components in mixed model. Technometrics 18:31–38CrossRefGoogle Scholar
  10. Divashuk MG, Vasilyev AV, Bespalova LA, Karlov GI (2012) Identity of the Rht-11 and Rht-B1e reduced plant height genes. Genetika 48:897–900PubMedPubMedCentralGoogle Scholar
  11. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581CrossRefGoogle Scholar
  12. Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042CrossRefPubMedPubMedCentralGoogle Scholar
  13. Evans LT (1998) Feeding the ten billion. Cambridge University Press, CambridgeGoogle Scholar
  14. Falconer D (1960) Introduction to quantitative genetics. Oliver and Boyd, LondonGoogle Scholar
  15. Flintham JE, Börner A, Worland AJ, Gale MD (1997) Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci 128:11–25CrossRefGoogle Scholar
  16. Ford BA, Foo E, Sharwood R, Karafiatova M, Vrána J, MacMillan C, Nichols DS, Steuernagel B, Uauy C, Doležel J, Chandler PM, Spielmeyer W (2018) Rht18 semi-dwarfism in wheat is due to increased expression of GA 2-oxidaseA9 and reduced GA content. Plant Physiol 177:168–180PubMedPubMedCentralGoogle Scholar
  17. Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S (2012) Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot 63:4419–4436CrossRefPubMedPubMedCentralGoogle Scholar
  18. Griffiths S, Simmonds J, Leverington M, Wang YK, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2012) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed 29:159–171CrossRefGoogle Scholar
  19. Guedira M, Brown-Guedira G, Van Sanford D, Sneller C, Souza E, Marshall D (2010) Distribution of Rht genes in modern and historic winter wheat cultivars from the Eastern and Central USA. Crop Sci 50:1811–1822CrossRefGoogle Scholar
  20. Haque M, Martinek P, Watanabe N, Kuboyama T (2011) Genetic mapping of gibberellic acid-sensitive genes for semi-dwarfism in durum wheat. Cereal Res Commun 39:171–178CrossRefGoogle Scholar
  21. Hauvermale AL, Ariizumi T, Steber CM (2012) Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol 160:83–92CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kertesz Z, Flintham JE, Gale MD (1991) Effects of Rht dwarfing genes on wheat grain yield and its components under Eastern European conditions. Cereal Res Commun 19:297–304Google Scholar
  25. Konzak CF (1988) Genetic analysis, genetic improvement and evaluation of induced semi-dwarf mutants in wheat. In: Semi-dwarf cereal mutants and their use in cross-breeding III. International Atomic Energy Agency, Vienna, pp 77–94Google Scholar
  26. Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109CrossRefGoogle Scholar
  27. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugenic 12:172–175CrossRefGoogle Scholar
  28. Kowalski AM, Gooding M, Ferrante A, Slafer GA, Orford S, Gasperini D, Griffiths S (2016) Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes. Field Crop Res 191:150–160CrossRefGoogle Scholar
  29. Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-Gonzalez RH, Wang XD, Borrill P, Fosker C, Ayling S, Phillips AL, Uauy C, Dubcovsky J (2017) Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci USA 114:E913–E921CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lanning SP, Martin JM, Stougaard RN, Guillen-Portal FR, Blake NK, Sherman JD, Robbins AM, Kephart KD, Lamb P, Carlson GR, Pumphrey M, Talbert LE (2012) Evaluation of near-isogenic lines for three height-reducing genes in hard red spring wheat. Crop Sci 52:1145–1152CrossRefGoogle Scholar
  32. Laperche A, Le Gouis J, Hanocq E, Brancourt-Hulmel M (2008) Modelling nitrogen stress with probe genotypes to assess genetic parameters and genetic determinism of winter wheat tolerance to nitrogen constraint. Euphytica 161:259–271CrossRefGoogle Scholar
  33. Law CN, Snape JW, Worland AJ (1978) The genetical relationship between height and yield in wheat. Heredity 40:133–151CrossRefGoogle Scholar
  34. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  36. Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649CrossRefGoogle Scholar
  37. Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794CrossRefGoogle Scholar
  38. Livne S, Lor VS, Nir I, Eliaz N, Aharoni A, Olszewski NE, Eshed Y, Weiss D (2015) Uncovering DELLA-independent gibberellin responses by characterizing new tomato procera mutants. Plant Cell 27:1579–1594CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lowe I, Jankuloski L, Chao SM, Chen XM, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123:143–157CrossRefPubMedPubMedCentralGoogle Scholar
  40. McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. https://shigen.nig.ac.jp/wheat/komugi/genes/download.jsp. Accessed 17 Feb 2018
  41. McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017) Catalogue of gene symbols for wheat: 2017 supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf. Accessed 17 Feb 2018
  42. Mo Y, Howell T, Vasquez-Gross H, de Haro LA, Dubcovsky J, Pearce S (2018) Mapping causal mutations by exome sequencing in a wheat TILLING population: a tall mutant case study. Mol Genet Genomics 293:463–477CrossRefGoogle Scholar
  43. Mujeeb-Kazi A, Gilchrist LI, Villareal RL, Delgado R (2000) Registration of 10 wheat germplasms resistant to Septoria tritici leaf blotch. Crop Sci 40:590–591CrossRefGoogle Scholar
  44. Nagano Y, Furuhashi H, Inaba T, Sasaki Y (2001) A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. Nucleic Acids Res 29:4097–4105CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pařenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831CrossRefPubMedPubMedCentralGoogle Scholar
  47. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261CrossRefGoogle Scholar
  48. Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015) PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–2039CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rebetzke GJ, Richards RA (2000) Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Aust J Agric Res 51:235–246CrossRefGoogle Scholar
  50. Rebetzke GJ, Richards RA, Fischer VM, Mickelson BJ (1999) Breeding long coleoptile, reduced height wheats. Euphytica 106:159–168CrossRefGoogle Scholar
  51. Rebetzke GJ, Richards RA, Fettell NA, Long M, Condon AG, Forrester RI, Botwright TL (2007) Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crop Res 100:10–23CrossRefGoogle Scholar
  52. Rebetzke GJ, Ellis MH, Bonnett DG, Mickelson B, Condon AG, Richards RA (2012) Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Res 126:87–96CrossRefGoogle Scholar
  53. Richards RA (1992) The effect of dwarfing genes in spring wheat in dry environments. I. Agronomic characteristics. Aust J Agric Res 43:517–527CrossRefGoogle Scholar
  54. Schillinger WF, Donaldson E, Allan RE, Jones SS (1998) Winter wheat seedling emergence from deep sowing depths. Agron J 90:582–586CrossRefGoogle Scholar
  55. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114CrossRefPubMedPubMedCentralGoogle Scholar
  56. Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis ME, Moore C, Richards RA (2007) A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height. Theor Appl Genet 115:59–66CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sun TP (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21:R338–R345CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tian XL, Wen WE, Xie L, Fu LP, Xu DG, Fu C, Wang DS, Chen XM, Xia XC, Chen QJ, He ZH, Cao SH (2017) Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front Plant Sci 8:1379CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vikhe P, Patil R, Chavan A, Oak M, Tamhankar S (2017) Mapping gibberellin-sensitive dwarfing locus Rht18 in durum wheat and development of SSR and SNP markers for selection in breeding. Mol Breed 37:28CrossRefGoogle Scholar
  60. Wang S, Basten CZ, Zeng ZB (2012) Windows QTL cartographer 2.5, Department of Statistics. North Carolina State University, RaleighGoogle Scholar
  61. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  62. Worland AJ (1986) Gibberellic acid insensitive dwarfing genes in Southern European wheats. Euphytica 35:857–866CrossRefGoogle Scholar
  63. Würschum T, Langer SM, Longin CFH, Tucker MR, Leiser WL (2017) A modern green revolution gene for reduced height in wheat. Plant J 92:892–903CrossRefPubMedPubMedCentralGoogle Scholar
  64. Youssefian S, Kirby EJM, Gale MD (1992) Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat. 2. Effects on leaf, stem, ear and floret growth. Field Crop Res 28:191–210CrossRefGoogle Scholar
  65. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar
  66. Zhang J, Gizaw SA, Bossolini E, Hegarty J, Howell T, Carter AH, Akhunov E, Dubcovsky J (2018) Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theor Appl Genet.  https://doi.org/10.1007/s00122-018-3111-9 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Youngjun Mo
    • 1
    • 6
  • Leonardo S. Vanzetti
    • 2
    • 4
  • Iago Hale
    • 3
  • Emiliano J. Spagnolo
    • 2
  • Fabio Guidobaldi
    • 4
  • Jassim Al-Oboudi
    • 1
  • Natalie Odle
    • 1
  • Stephen Pearce
    • 5
  • Marcelo Helguera
    • 2
  • Jorge Dubcovsky
    • 1
    • 7
    Email author
  1. 1.Department of Plant SciencesUniversity of CaliforniaDavisUSA
  2. 2.EEA INTA Marcos JuárezInstituto Nacional de Tecnología Agropecuaria (INTA)Marcos JuárezArgentina
  3. 3.Department of Agriculture, Nutrition, and Food SystemsUniversity of New HampshireDurhamUSA
  4. 4.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos AiresBuenos AiresArgentina
  5. 5.Department of Soil and Crop SciencesColorado State UniversityFort CollinsUSA
  6. 6.National Institute of Crop Science, Rural Development AdministrationWanjuSouth Korea
  7. 7.Howard Hughes Medical InstituteChevy ChaseUSA

Personalised recommendations