Theoretical and Applied Genetics

, Volume 131, Issue 4, pp 829–837 | Cite as

Construction of a genome-anchored, high-density genetic map for melon (Cucumis melo L.) and identification of Fusarium oxysporum f. sp. melonis race 1 resistance QTL

  • Sandra E. Branham
  • Amnon Levi
  • Melanie Katawczik
  • Zhangjun Fei
  • W. Patrick WechterEmail author
Original Article


Key message

Four QTLs and an epistatic interaction were associated with disease severity in response to inoculation with Fusarium oxysporum f. sp. melonis race 1 in a recombinant inbred line population of melon.


The USDA Cucumis melo inbred line, MR-1, harbors a wealth of alleles associated with resistance to several major diseases of melon, including powdery mildew, downy mildew, Alternaria leaf blight, and Fusarium wilt. MR-1 was crossed to an Israeli cultivar, Ananas Yok’neam, which is susceptible to all of these diseases, to generate a recombinant inbred line (RIL) population of 172 lines. In this study, the RIL population was genotyped to construct an ultra-dense genetic linkage map with 5663 binned SNPs anchored to the C. melo genome and exhibits the overall high quality of the assembly. The utility of the densely genotyped population was demonstrated through QTL mapping of a well-studied trait, resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (Fom) race 1. A major QTL co-located with the previously validated resistance gene Fom-2. In addition, three minor QTLs and an epistatic interaction contributing to Fom race 1 resistance were identified. The MR-1 × AY RIL population provides a valuable resource for future QTL mapping studies and marker-assisted selection of disease resistance in melon.



This research used resources provided by the SCINet project of the USDA Agricultural Research Service, ARS project number 0500-00093-001-00-D.


This study was funded, in part, by the United States Department of Agriculture (USDA) project number 6080-22000-028-00 and the National Institute of Food and Agriculture, Specialty Crops Research Initiative project number 6080-21000-018-08.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiment conducted complies with the laws of the United States.

Supplementary material

122_2017_3039_MOESM1_ESM.csv (5 kb)
Supplementary material 1 (CSV 4 kb) Online resource 1 Disease severity line means (dsLineMeans), best linear unbiased predictors of disease severity (dsBLUPs), and line means within each test (dsTest1 and dsTest2) for the MR-1 x AY RIL population and parents
122_2017_3039_MOESM2_ESM.csv (150 kb)
Supplementary material 2 (CSV 150 kb) Online resource 2 Linkage groups (LG) and genetic positions (cM) of 5,747 binned SNPs (named as “S”chromosome”_“physical position in base pairs) prior to the removal of misaligned SNPs
122_2017_3039_MOESM3_ESM.csv (2.1 mb)
Supplementary material 3 (CSV 2180 kb) Online resource 3 Genotypes (AA indicates alleles contributed by MR-1 and BB by AY), linkage group (LG), genetic position (cM), chromosome (CS), physical position (Mb), and p value from a χ2 test of deviations from expected segregation ratios (P value) for the 5,663 binned SNPs used to generate the MR-1 x AY genetic linkage map
122_2017_3039_MOESM4_ESM.csv (59 kb)
Supplementary material 4 (CSV 58 kb) Online resource 4 Chromosome (cs), start and stop position (in bp), strand designation, and functional descriptors for genes found within the 1.5-LOD intervals of Fusarium oxysporum f.sp. melonis race 1 resistance QTLs


  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefPubMedGoogle Scholar
  2. Argyris JM, Ruiz-Herrera A, Madriz-Masis P et al (2015) Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genom 16:4. CrossRefGoogle Scholar
  3. Belisario A, Luongo L, Corazza L, et al (2000) Studies on Fusarium oxysporum f. sp. melonis Italian populations [Cucumis melo L.]. Colture Protette 29(3):87–89Google Scholar
  4. Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact 17:763–770. CrossRefPubMedGoogle Scholar
  5. Brien C (2016) asremlPlus: augments the use of ‘asreml’ in fitting mixed models. R package version 2.0-9. Accessed 10 Feb 2017
  6. Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl, vol 46. Springer, New YorkCrossRefGoogle Scholar
  7. Broman KW, Speed T (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Stat Soc B 64(641–656):731–775Google Scholar
  8. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. CrossRefPubMedGoogle Scholar
  9. Browning BL, Browning SR (2016) Genotype imputation with millions of reference samples. Am J Hum Genet 98:116–126. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Catanzariti A-M, Lim GTT, Jones DA (2015) The tomato I-3 gene: a novel gene for resistance to fusarium wilt disease. New Phytol 207:106–118. CrossRefPubMedGoogle Scholar
  11. Chang C, Wang Y, Tung C (2017) Genome-wide single nucleotide polymorphism discovery and the construction of a high-density genetic map for melon (Cucumis melo L.) using genotyping-by-sequencing. Front Plant Sci 8:1–11. Google Scholar
  12. Cole SJ, Diener AC (2013) Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f. sp. matthioli. New Phytol 200:172–184. CrossRefPubMedGoogle Scholar
  13. Daley J, Branham S, Levi A et al (2017) Mapping resistance to Alternaria cucumerina in Cucumis melo. Phytopathology 107:427–432CrossRefPubMedGoogle Scholar
  14. Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CrossRefPubMedPubMedCentralGoogle Scholar
  15. Diaz A, Fergany M, Formisano G et al (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Erzurum K, Taner Y, Secer E et al (1999) Occurrence of races of Fusarium oxysporum f. sp. melonis causing wilt on melon in Central Anatolia. J Turk Phytopathol 28:87–97Google Scholar
  18. Ficcadenti N, Sestili S, Annibali S, Campanelli G (2002) Resistance to Fusarium oxysporum f. sp. melonis Race 1,2 in melon lines Nad-1 and Nad-2. Plant Dis 86:897–900. CrossRefGoogle Scholar
  19. Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gilmour AR, Gogel BJ, Cullis BR et al (2009) ASReml user guide release 3.0. VSN International Ltd, Hemel HempsteadGoogle Scholar
  21. Giri MK, Singh N, Banday ZZ et al (2017) GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. Plant J 91:802–815. CrossRefPubMedGoogle Scholar
  22. Glaubitz JC, Casstevens TM, Lu F et al (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Joobeur T, King JJ, Nolin SJ et al (2004) The fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39:283–297. CrossRefPubMedGoogle Scholar
  24. Kosambi DD (1943) the estimation of map distances from recombination values. Ann Eugen 12:172–175. CrossRefGoogle Scholar
  25. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Manichaikul A, Moon JY, Sen Ś et al (2009) A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis. Genetics 181:1077–1086. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Marchler-Bauer A, Bryant SH (2004) CD-search: protein domain annotations on the fly. Nucleic Acids Res 32:327–331. CrossRefGoogle Scholar
  28. Marchler-Bauer A, Bo Y, Han L et al (2017) CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203. CrossRefPubMedGoogle Scholar
  29. Namiki F, Shimizu K, Satoh K et al (2000) Occurrence of Fusarium oxysporum f. sp. melonis Race 1 in Japan. J Gen Plant Pathol 66:12–17CrossRefGoogle Scholar
  30. Nimmakayala P, Tomason YR, Abburi VL et al (2016) Genome-wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high resolution genetic map. Front Plant Sci 7:1–15. Google Scholar
  31. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  32. Risser G, Banihashemi Z, Davis DW (1976) A proposed nomenclature of Fusarium oxysporum f. sp. melonis races and resistance genes in Cucumis melo. Phytopathology 66:1105–1106CrossRefGoogle Scholar
  33. Schreuder W, Lamprecht SC, Holz G (2000) Race determination and vegetative compatibility grouping of Fusarium oxysporum f. sp. melonis from South Africa. Plant Dis 84:231–234. CrossRefGoogle Scholar
  34. Sekhwal M, Li P, Lam I et al (2015) Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci 16:19248–19290. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387. PubMedPubMedCentralGoogle Scholar
  36. Tezuka T, Waki K, Yashiro K et al (2009) Construction of a linkage map and identification of DNA markers linked to Fom-1, a gene conferring resistance to Fusarium oxysporum f. sp. melonis race 2 in melon. Euphytica 168:177–188. CrossRefGoogle Scholar
  37. Thomas CE (1982) Resistance to downy mildew in Cucumis melo plant introductions and American cultivars [Pseudoperonospora cubensis]. Plant Dis 66:500–502CrossRefGoogle Scholar
  38. Thomas CE (1986) Downy and powdery mildew resistant melon breeding line MR-1. HortScience 21:329Google Scholar
  39. Thomas CE, McCreight JD, Jourdain EL (1990) Inheritance of resistance to Alternaria cucumerina in Cucumis melo line MR-1. Plant Dis 74:868–870CrossRefGoogle Scholar
  40. Wang Y, Thomas CE, Dean RA (2000) Genetic mapping of a fusarium wilt resistance gene (Fom-2) in melon (Cucumis melo L.). Mol Breed 6:379–389. CrossRefGoogle Scholar
  41. Wang S, Yang J, Zhang M (2011) Developments of functional markers for Fom-2-mediated fusarium wilt resistance based on single nucleotide polymorphism in melon (Cucumis melo L.). Mol Breeding 27:385–393. CrossRefGoogle Scholar
  42. Wechter WP, Whitehead MP, Thomas CE, Dean RA (1995) Identification of a randomly amplified polymorphic DNA marker linked to the fom2 fusarium wilt resistance gene in melon MR-1. Phytopathology 85:1245–1249CrossRefGoogle Scholar
  43. Wechter WP, Dean RA, Thomas CE (1998) Development of sequence-specific primers that amplify a 1.5-kb DNA marker for race 1 fusarium wilt resistance in Cucumis melo L. HortScience 33:291–292Google Scholar
  44. Wechter WP, Kousik C, McMillan M, Levi A (2012) Identification of resistance to fusarium oxysporum f. sp. niveum race 2 in citrullus lanatus var. citroides plant introductions. HortScience 47:334–338. Google Scholar
  45. Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289. CrossRefPubMedGoogle Scholar
  46. Zheng XY, Wolff DW, Baudracco-Arnas S, Pitrat M (1999) Development and utility of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLPs) linked to the Fom-2 fusarium wilt resistance gene in melon (Cucumis melo L.). Theor Appl Genet 99:453–463. CrossRefPubMedGoogle Scholar
  47. Zink FW (1992) Genetics of resistance to Fusarium oxysporum f. sp. melonis races 0 and 2 in melon cultivars Honey Dew, Iroquois, and Delicious 51. Plant Dis 76:162–166CrossRefGoogle Scholar
  48. Zink FW, Thomas CE (1990) Genetics of resistance to Fusarium oxysporum f. sp. melonis races 0, 1, and 2 in melon line MR-1. Phytopathology 80:1230–1232CrossRefGoogle Scholar
  49. Zuniga TL, Zitter TA, Gordon TR et al (1997) Characterization of pathogenic races of Fusarium oxysporum f.sp. melonis causing fusarium wilt of melon in New York. Plant Dis 81:592–596. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature (Outside the USA) 2018

Authors and Affiliations

  • Sandra E. Branham
    • 1
  • Amnon Levi
    • 1
  • Melanie Katawczik
    • 1
  • Zhangjun Fei
    • 2
  • W. Patrick Wechter
    • 1
    Email author
  1. 1.USDA, ARS, US Vegetable LaboratoryCharlestonUSA
  2. 2.Boyce Thompson InstituteIthacaUSA

Personalised recommendations