Theoretical and Applied Genetics

, Volume 131, Issue 2, pp 365–375 | Cite as

Molecular cytogenetic and genomic analyses reveal new insights into the origin of the wheat B genome

  • Wei Zhang
  • Mingyi Zhang
  • Xianwen Zhu
  • Yaping Cao
  • Qing Sun
  • Guojia Ma
  • Shiaoman Chao
  • Changhui Yan
  • Steven S. Xu
  • Xiwen CaiEmail author
Original Article


Key message

This work pinpointed the goatgrass chromosomal segment in the wheat B genome using modern cytogenetic and genomic technologies, and provided novel insights into the origin of the wheat B genome.


Wheat is a typical allopolyploid with three homoeologous subgenomes (A, B, and D). The donors of the subgenomes A and D had been identified, but not for the subgenome B. The goatgrass Aegilops speltoides (genome SS) has been controversially considered a possible candidate for the donor of the wheat B genome. However, the relationship of the Ae. speltoides S genome with the wheat B genome remains largely obscure. The present study assessed the homology of the B and S genomes using an integrative cytogenetic and genomic approach, and revealed the contribution of Ae. speltoides to the origin of the wheat B genome. We discovered noticeable homology between wheat chromosome 1B and Ae. speltoides chromosome 1S, but not between other chromosomes in the B and S genomes. An Ae. speltoides-originated segment spanning a genomic region of approximately 10.46 Mb was detected on the long arm of wheat chromosome 1B (1BL). The Ae. speltoides-originated segment on 1BL was found to co-evolve with the rest of the B genome. Evidently, Ae. speltoides had been involved in the origin of the wheat B genome, but should not be considered an exclusive donor of this genome. The wheat B genome might have a polyphyletic origin with multiple ancestors involved, including Ae. speltoides. These novel findings will facilitate genome studies in wheat and other polyploids.



We thank members of the labs involved for their help to this research and Drs. Lili Qi and Rebekah Oliver for their critical review of the manuscript. This project is supported by Agriculture and Food Research Initiative Competitive Grant no. 2013-67013-21121 from the USDA National Institute of Food and Agriculture.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2017_3007_MOESM1_ESM.pdf (806 kb)
Supplementary material 1 (PDF 805 kb)
122_2017_3007_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 13 kb)


  1. Blake NK, Lehfeldt BR, Lavin M, Talbert LE (1999) Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: the B genome of wheat. Genome 42:351–360CrossRefPubMedGoogle Scholar
  2. Cai X, Jones S (1997) Direct evidence for high level of autosyndetic pairing in hybrids of Thinopyrum intermedium and Th. ponticum with Triticum aestivum. Theor Appl Genet 95:568–572CrossRefGoogle Scholar
  3. Cai X, Jones S, Murray T (1998) Molecular cytogenetic characterization of Thinopyrum and wheat-Thinopyrum translocated chromosomes in a wheat Thinopyrum amphiploid. Chromosome Res 6:183–189CrossRefPubMedGoogle Scholar
  4. Chao S, Sharp PJ, Worland AJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504CrossRefPubMedGoogle Scholar
  5. Chen X, Faris JD, Hu J, Stack RW, Adhikari T, Elias EM, Kianian SF, Cai X (2007) Saturation and comparative mapping of a major Fusarium head blight resistance QTL in tetraploid wheat. Mol Breed 19:113–124CrossRefGoogle Scholar
  6. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321CrossRefPubMedGoogle Scholar
  7. Dvorak J (1972) Genetic variability in Aegilops speltoides affecting homoeologous pairing in wheat. Can J Genet Cytol 14:371–380CrossRefGoogle Scholar
  8. Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dvorak J, Diterlizzi P, Zhang HB, Resta P (1993) The Evolution of polyploid wheats—identification of the A-genome donor species. Genome 36:21–31CrossRefPubMedGoogle Scholar
  10. Dvorak J, Deal KR, Luo MC (2006) Discovery and mapping of wheat Ph1 suppressors. Genetics 174:17–27CrossRefPubMedPubMedCentralGoogle Scholar
  11. Felsenburg T, Levy AA, Galili G, Feldman M (1991) Polymorphism of high molecular weight glutenins in wild tetraploid wheat: spatial and temporal variation in a native site. Isr J Bot 40:451–479Google Scholar
  12. Friebe B, Qi L, Liu C, Gill B (2011) Genetic compensation abilities of Aegilops speltoides chromosomes for homoeologous B-genome chromosomes of polyploid wheat in disomic S(B) chromosome substitution lines. Cytogenet Genome Res 134:144–150CrossRefPubMedGoogle Scholar
  13. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gill BS, Kimber G (1974) Giemsa C-banding and the evolution of wheat. Proc Natl Acad Sci USA 71:4086–4090CrossRefPubMedPubMedCentralGoogle Scholar
  15. Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752CrossRefPubMedGoogle Scholar
  16. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jenkins JA (1929) Chromosome homologies in wheat and Aegilops. Am J Bot 16:238–245CrossRefGoogle Scholar
  18. Johnson BL (1972) Protein electrophoretic profiles and the origin of the B genome of wheat. Proc Natl Acad Sci USA 69:1398–1402CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kapustin Y, Souvorov A, Tatusova T, Lipman D (2008) Splign: algorithms for computing spliced alignments with identification of paralogs. Biol Direct 3:20CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kihara H (1919) Ueber cytologische Studien bei einigen Getreidearten. Spezies-Bastarde des Weizen und Weizenroggen-Bastard. Bot Mag 33:17–38CrossRefGoogle Scholar
  21. Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of vulgare wheat. Agric Hortic 19:889–890Google Scholar
  22. Kihara H (1954) Considerations on the evolution and distribution of Aegilops species based on the analyzer-method. Cytologia 19:336–357CrossRefGoogle Scholar
  23. Kihara H, Yamashita K, Tanaka M (1959) Genomes of 6x species of Aegilops. Wheat Inf Serv 8:3–5Google Scholar
  24. Kilian B, Özkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227CrossRefPubMedGoogle Scholar
  25. Kimber G, Athwal RS (1972) A reassessment of the course of evolution in wheat. Proc Natl Acad Sci USA 69:912–915CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liu Z, Yue W, Dong YS, Zhang XY (2006) Identification and preliminary analysis of several centromere-associated bacterial artificial chromosome clones from a diploid wheat (Triticum boeoticum Boiss.) library. J Integr Plant Biol 48:348–358CrossRefGoogle Scholar
  27. McFadden ES, Sears ER (1946) The origin of Triticum speltoides and its free-threshing hexaploid relatives. J Hered 37:107–116CrossRefGoogle Scholar
  28. Milne I, Shaw P, Stephen G, Bayer M, Cardle L, Thomas WTB, Flavell AJ, Marshall D (2010) Flapjack—graphical genotype visualization. Bioinformatics 26:3133–3134CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedPubMedCentralGoogle Scholar
  30. Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1021CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ogihara T, Tsunewaki K (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor Appl Genet 76:321–332CrossRefPubMedGoogle Scholar
  32. Pathak GN (1940) Studies in the cytology of cereals. J Genet 39:437–467CrossRefGoogle Scholar
  33. Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82CrossRefPubMedGoogle Scholar
  34. Riley R, Unrau J, Chapman V (1958) Evidence on the origin of the B genome of wheat. J Hered 49:90–98CrossRefGoogle Scholar
  35. Riley R, Kimber G, Chapman V (1961) Origin of genetic control of diploid-like behavior of polyploid wheat. J Hered 52:22–25CrossRefGoogle Scholar
  36. Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, Fish LJ, Snape JW, Moore G (1999) Induction and characterization of Ph1 wheat mutants. Genetics 153:1909–1918PubMedPubMedCentralGoogle Scholar
  37. Šafář J, Šimková H, Kubaláková M, Číhalíková J, Suchánková P, Bartoš J, Doležel J (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223CrossRefPubMedGoogle Scholar
  38. Sakamura T (1918) Kurze Mitteilung über die Chromosomenzahlen und die Verwandtschaftsverhältnisse der Triticum-Arten. Bot Mag 32:150–153CrossRefGoogle Scholar
  39. Salse J, Chague V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B (2008) New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genom 9:555CrossRefGoogle Scholar
  40. Sarkar P, Stebbins GL (1956) Morphological evidence concerning the origin of the B genome in wheat. Am J Bot 43:297–304CrossRefGoogle Scholar
  41. Sasanuma T, Miyashita NT, Tsunewaki K (1996) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra- and interspecific variations of five Aegilops Sitopsis species. Theor Appl Genet 92:928–934CrossRefPubMedGoogle Scholar
  42. Sax K (1922) Sterility in wheat hybrids. II. Chromosome behavior in partially sterile hybrids. Genetics 7:513–552PubMedPubMedCentralGoogle Scholar
  43. Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Winzeler M, Keller B (1994) Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor Appl Genet 88:994–1003CrossRefPubMedGoogle Scholar
  44. Wang GZ, Miyashita NT, Tsunewaki K (1997) Plasmon analyses of Triticum (wheat) and Aegilops: PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci USA 94:14570–14577CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang S, Wong D, Forrest K, Allen A, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zohary D, Feldman M (1962) Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16:44–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Wei Zhang
    • 1
  • Mingyi Zhang
    • 1
  • Xianwen Zhu
    • 1
  • Yaping Cao
    • 1
  • Qing Sun
    • 2
  • Guojia Ma
    • 1
  • Shiaoman Chao
    • 3
  • Changhui Yan
    • 2
  • Steven S. Xu
    • 3
  • Xiwen Cai
    • 1
    Email author
  1. 1.Department of Plant SciencesNorth Dakota State UniversityFargoUSA
  2. 2.Department of Computer ScienceNorth Dakota State UniversityFargoUSA
  3. 3.The Red River Valley Agricultural Research CenterUSDA-ARSFargoUSA

Personalised recommendations