Theoretical and Applied Genetics

, Volume 130, Issue 9, pp 1867–1884 | Cite as

Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat

  • Chor-Tee Tan
  • Hangjin Yu
  • Yan Yang
  • Xiangyang Xu
  • Mingshun Chen
  • Jackie C. Rudd
  • Qingwu Xue
  • Amir M. H. Ibrahim
  • Lisa Garza
  • Shichen Wang
  • Mark E. Sorrells
  • Shuyu LiuEmail author
Original Article


Key message

Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency.


Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.



Nucleotide–nucleotide basic local alignment search tool


Cetyltrimethylammonium bromide


Doubled haploid




Great Plains


Kompetitive allele specific PCR


Logarithm of the odds


Marker-assisted selection


Next-generation sequencing


Restriction fragment length polymorphism


Single nucleotide polymorphism


Sequence-tagged site



The authors thank Charlie Rush for providing access to the ABI 7500 instrument for running KASP assays. We appreciate the seeds provided by Jesse Poland and Eduard Akhunov from Kansas State University, Manhattan, KS, and Mark Sorrells from Cornell University, Ithaca, NY. This research was mainly supported by Texas A&M AgriLife Research and Texas Wheat Producers Board. Partial funding was also provided by the National Research Initiative Competitive Grants 2017-67007-25939 from the USDA National Institute of Food and Agriculture.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2017_2930_MOESM1_ESM.xlsx (74 kb)
Supplementary material 1 (XLSX 73 kb)


  1. Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517CrossRefPubMedGoogle Scholar
  2. Assanga S, Zhang G, Tan C-T, Rudd JC, Ibrahim A, Xue Q, Chao S, Fuentealba MP, Liu S (2017) Saturated genetic mapping of wheat streak mosaic virus resistance gene Wsm2 in wheat. Crop Sci 57:332–339CrossRefGoogle Scholar
  3. Boyle P, Le Su E, Rochon A, Shearer HL, Murmu J, Chu JY, Fobert PR, Després C (2009) The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. Plant Cell 21:3700–3713CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burd JD, Porter DR (2006) Biotypic diversity in greenbug (Hemiptera: Aphididae): characterizing new virulence and host associations. J Econ Entomol 99:959–965CrossRefPubMedGoogle Scholar
  5. Cabral AL, Jordan MC, McCartney CA, You FM, Humphreys DG, MacLachlan R, Pozniak CJ (2014) Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.). BMC Plant Biol 14:340CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dreccer MF, Borgognone MG, Ogbonnaya FC, Trethowan RM, Winter B (2007) CIMMYT-selected derived synthetic bread wheats for rainfed environments: yield evaluation in Mexico and Australia. Field Crop Res. 100:218–228CrossRefGoogle Scholar
  7. Dreisigacker S, Sukumaran S, Guzmán C, He X, Lan C, Bonnett D, Crossa J (2015) Molecular marker-based selection tools in spring bread wheat improvement: CIMMYT experience and prospects. In: Rani RV, Rao SR, Raina SN (eds) Molecular breeding for sustainable crop improvement, vol 2. Springer, New YorkGoogle Scholar
  8. Dubcovsky JA, Lukaszewski AJ, Echaide M, Antonell EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocation carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655–1660CrossRefGoogle Scholar
  9. Dunckel SM, Olson EL, Rouse MN, Bowden RL, Poland JA (2015) Genetic Mapping of race-specific stem rust resistance in the synthetic hexaploid W7984 × Opata M85 mapping population. Crop Sci 55:2580–2588CrossRefGoogle Scholar
  10. Forde BG, Roberts MR (2014) Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000Prime Rep 6:37Google Scholar
  11. Formusoh ES, Hatchett JH, Black WC, Stuart JJ (1996) Sex-linked inheritance of virulence against wheat resistance gene H9 in the Hessian fly (Diptera: Cecidomyiidae). Ann Entomol Soc Am 89:428–434CrossRefGoogle Scholar
  12. Gallun RL (1977) Genetic basis of Hessian fly epidemics. Ann N Y Acad Sci 287:223–229CrossRefGoogle Scholar
  13. Hückelhoven R, Dechert C, Kogel K-H (2003) Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci USA 100:55555–55560CrossRefGoogle Scholar
  14. Huo N, Vogel JP, Lazo GR, You FM, Ma Y, McMahon S, Dvorak J, Anderson OD, Luo MC, Gu YQ (2009) Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat. Plant Mol Biol 70:47–61CrossRefPubMedGoogle Scholar
  15. International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:6194Google Scholar
  16. Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95CrossRefPubMedGoogle Scholar
  17. Knutson A, Swart J (2007) Hessian fly outbreaks showing up in many north Texas wheat fields. Southwest Report.
  18. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Hum 12:172–175Google Scholar
  19. Lazar MD, Worrall WD, Peterson GL, Porter KB, Rooney LW, Tuleen NA, Marshall DS, McDaniel ME, Nelson LR (1997) Registration of TAM 110. Crop Sci 37:1978–1979CrossRefGoogle Scholar
  20. Li C, Chen M, Chao S, Yu J, Bai G (2013) Identification of a novel gene, H34, in wheat using recombinant inbred lines and single nucleotide polymorphism markers. Theor Appl Genet 126:2065–2071CrossRefPubMedGoogle Scholar
  21. Li C, Bai G, Chao S, Wang Z (2015a) A high-density SNP and SSR consensus map reveals segregation distortion regions in wheat. BioMed Res, Int, p 830618Google Scholar
  22. Li G, Wang Y, Chen M, Edae E, Poland J, Akhunov E, Chao S, Bai G, Carver BF, Yan L (2015b) Precisely mapping a major gene conferring resistance to Hessian fly in bread wheat using genotyping-by-sequencing. BMC Genom 16:108CrossRefGoogle Scholar
  23. Liu XM, Brwon-Guedira GL, Hatchett JH, Owuoche JO, Chen M (2005) Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat. Theor Appl Genet 111:1308–1315CrossRefPubMedGoogle Scholar
  24. Liu S, Griffey CA, Hall MD, Mckendry AL, Chen J, Brooks WS, Brown-Guedira G, Sanford D, Schmale DG (2013) Molecular characterization of field resistance to Fusarium head blight in two US soft red winter wheat cultivars. Theor Appl Genet 126:2485–2498CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liu S, Rudd JC, Bai G, Haley SD, Ibrahim AMH, Xue Q, Hays DB, Graybosch RA, Devkota RN, St Amand P (2014) Molecular markers linked to important genes in hard winter wheat. Crop Sci 54:1–18CrossRefGoogle Scholar
  26. Liu S, Assanga SO, Dhakal S, Gu X, Tan CT, Yang Y et al (2016) Validation of chromosomal locations of 90K array single nucleotide polymorphisms in US wheat. Crop Sci 56:364–373CrossRefGoogle Scholar
  27. Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer K, McCombie WR, Kianian SF, Martis MM, Mayer KFX, Sehgal SK, Li W, Gill BS, Bevan MW, Simková H, Dolezel J, Weining S, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA 110:7940–7945CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ma ZQ, Gill BS, Sorrells ME, Tanksley SD (1993) RFLP markers linked to Hessian fly-resistance genes in wheat (Triticum aestivum L.) from Triticum tauschii (Cross.). Schmal. Theor. Appl. Genet. 85:750–754PubMedGoogle Scholar
  29. Martin TJ, Harvey TL, Hatchett JH (1982) Registration of greenbug and Hessian fly resistance wheat germplasm. Crop Sci 22:1089CrossRefGoogle Scholar
  30. Martín-Sánchez JA, Gómez-Colmenarejo M, Del Moral J, Sin E, Montes MJ, González-Belinchón C, Lopez-Braña I, Delibes A (2003) A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 106:1248–1255CrossRefPubMedGoogle Scholar
  31. Mcintosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. Proceedings of 10th international wheat genetics symposium. Paestum, Italy, September 2003.
  32. Miller JC, Chenzem WR, Clay NK (2015) Ternary WD40 repeat-containing protein complexes: evolution, composition and roles in plant immunity. Front Plant Sci 6:1108PubMedGoogle Scholar
  33. Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731PubMedPubMedCentralGoogle Scholar
  34. Nuessly GS, Nagata RT, Burd JD, Hentz MG, Carroll AS, Halbert SE (2008) Biology and biotype determination of greenbug, Schizaphis graminum (Hemiptera: Aphididae), on seashore paspalum turfgrass (Paspalum vaginatum). Environ Entomol 37:586–591PubMedGoogle Scholar
  35. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253CrossRefPubMedPubMedCentralGoogle Scholar
  36. Porter KB, Worrall WD, Gardenhire JH, Gilmore EC, McDaniel ME, Tuleen NA (1987) Registration of ‘TAM 107’ wheat. Crop Sci 27:818CrossRefGoogle Scholar
  37. Porter DR, Webster JA, Burton RL, Puterka GL, Smith EL (1991) New sources of resistance to greenbug in wheat. Crop Sci 31:1502–1504CrossRefGoogle Scholar
  38. Porter DR, Burd JD, Shufran KA, Webster JA, Teetes GL (1997) Greenbug (Homoptera: Aphididae) biotypes: selected by resistant cultivars or preadapted opportunists? J Econ Entomol 90:1055–1065CrossRefGoogle Scholar
  39. Randhawa HS, Asif M, Pozniak C, Clarke JM, Graf RJ, Fox SL, Humphreys DJ, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Hucl P, Spaner D (2013) Application of molecular markers to wheat breeding in Canada. Plant Breed 132:458–471Google Scholar
  40. Ratcliffe RH, Hatchett JH (1997) Biology and genetics of the Hessian fly and resistance in wheat. In: Bundari K (ed) New developments in entomology. Scientific Information Guild, Trivandurm, pp 47–56Google Scholar
  41. Ratcliffe RH, Cambron SE, Flanders KL, Bosque-Perez NA, Clement SL, Ohm HW (2000) Biotype Composition of Hessian Fly (Diptera: Cecidomyiidae) Populations from the Southeastern, Midwestern, and Northwestern United States and Virulence to Resistance Genes in Wheat. J Econ Entomol 93:1319–1328CrossRefPubMedGoogle Scholar
  42. Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567CrossRefPubMedPubMedCentralGoogle Scholar
  43. Saintenac C, Jiang D, Wang S, Akhunov E (2013) Sequence-based mapping of the polyploid wheat genome. G3 (Bethesda) 3: 1105–1114Google Scholar
  44. Sardesai N, Nemacheck JA, Subramanyan S, Williams CE (2005) Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor Appl Genet 111:1167–1173CrossRefPubMedGoogle Scholar
  45. Smith R (2007) Widespread outbreaks of Hessian fly reported in wheat. Southwest Farm Report.
  46. Sorrells ME, Gustafson JP, Somers D, Chao S, Benscher D, Guedira-Brown G et al (2011) Reconstruction of the synthetic W7984 × Opata M85 wheat reference population. Genome 54:875–882CrossRefPubMedGoogle Scholar
  47. Tan C-T, Assanga A, Zhang G, Rudd JC, Haley SD, Xue Q, Ibrahim A, Bai G, Zhang X, Byrne P, Fuentealba MP, Liu S (2017) Development and validation of KASP markers for wheat streak mosaic virus resistance gene Wsm2. Crop Sci 57:1–10CrossRefGoogle Scholar
  48. Tsilo TJ, Kolmer JA, Anderson JA (2014) Molecular mapping and improvement of leaf rust resistance in wheat breeding lines. Phytopathology 104(8):865–870CrossRefPubMedGoogle Scholar
  49. Van Ooijen JW (2006) JoinMap®4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  50. Van Ooijen G, Mayr G, Kasiem MMA, Albrecht M, Cornelissen Takken FLW (2008) Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59:1383–1397CrossRefPubMedGoogle Scholar
  51. Wang T, Xu SS, Harris MO, Hu J, Liu L, Cai X (2006) Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theor Appl Genet 113(4):611–618CrossRefPubMedGoogle Scholar
  52. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing C, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796CrossRefPubMedPubMedCentralGoogle Scholar
  53. Weng Y, Lazar MD (2002) Amplified fragment length polymorphism- and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breeding 121:218–223CrossRefGoogle Scholar
  54. Weng Y, Li W, Devkota RN, Rudd JC (2005) Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Appl Genet 110:462–469CrossRefPubMedGoogle Scholar
  55. Williams CE, Collier N, Sardesai CC, Ohm HW, Cambron SE (2003) Phenotypic assessment and mapped markers for H31, a new wheat gene conferring resistance to Hessian fly (Diptera:Cecidomyiidae). Theor Appl Genet 107:1516–1523CrossRefPubMedGoogle Scholar
  56. Yu GT, Williams CE, Harris MO, Cai XW, Mergoum M, Xu SS (2010) Development and validation of molecular markers closely linked to H32 for resistance to Hessian fly in wheat. Crop Sci 50:1325–1332CrossRefGoogle Scholar
  57. Yu GT, Wang T, Anderson KM, Harris MO, Cai X, Xu SS (2012) Evaluation and haplotype analysis of elite synthetic hexaploid wheat lines for resistance to Hessian fly. Crop Sci 52:752–763CrossRefGoogle Scholar
  58. Zantoko L, Shukle RH (1997) Genetics of virulence in the Hessian fly to resistance gene H13 in wheat. J Hered 88:120–123CrossRefGoogle Scholar
  59. Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhu LC, Smith CM, Fritz A, Boyko EV, Flinn MB (2004) Genetic analysis and molecular mapping of a wheat gene conferring tolerance to the greenbug (Schizaphis graminum Rondani). Theor Appl Genet 109:289–293CrossRefPubMedGoogle Scholar
  61. Zhu LC, Smith CM, Fritz A, Boyko E, Voothuluru P, Gill BS (2005) Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii. Theor Appl Genet 111:831–837CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Chor-Tee Tan
    • 1
  • Hangjin Yu
    • 1
  • Yan Yang
    • 1
    • 2
  • Xiangyang Xu
    • 4
  • Mingshun Chen
    • 3
  • Jackie C. Rudd
    • 1
  • Qingwu Xue
    • 1
  • Amir M. H. Ibrahim
    • 2
  • Lisa Garza
    • 1
  • Shichen Wang
    • 5
  • Mark E. Sorrells
    • 6
  • Shuyu Liu
    • 1
    Email author
  1. 1.Texas A&M AgriLife ResearchAmarilloUSA
  2. 2.Department of Soil and Crop ScienceTexas A&M UniversityCollege StationUSA
  3. 3.USDA-ARS and Department of EntomologyKansas State UniversityManhattanUSA
  4. 4.USDA-ARS Wheat, Peanut and Other Field Crop Research UnitStillwaterUSA
  5. 5.Genomic and Bioinformatics ServicesTexas A&M AgriLife ResearchCollege StationUSA
  6. 6.Department of Plant Breeding and GeneticsCornell UniversityIthacaUSA

Personalised recommendations