Advertisement

Theoretical and Applied Genetics

, Volume 130, Issue 8, pp 1649–1667 | Cite as

Deciphering the complex nature of bolting time regulation in Beta vulgaris

  • Conny Tränkner
  • Nina Pfeiffer
  • Martin Kirchhoff
  • Friedrich J. Kopisch-Obuch
  • Henk van Dijk
  • Markus Schilhabel
  • Mario Hasler
  • Nazgol Emrani
Original Article

Abstract

Key message

Only few genetic loci are sufficient to increase the variation of bolting time in Beta vulgaris dramatically, regarding vernalization requirement, seasonal bolting time and reproduction type.

Abstract

Beta species show a wide variation of bolting time regarding the year of first reproduction, seasonal bolting time and the number of reproduction cycles. To elucidate the genetics of bolting time control, we used three F3 mapping populations that were produced by crossing a semelparous, annual sugar beet with iteroparous, vernalization-requiring wild beet genotypes. The semelparous plants died after reproduction, whereas iteroparous plants reproduced at least twice. All populations segregated for vernalization requirement, seasonal bolting time and the number of reproduction cycles. We found that vernalization requirement co-segregated with the bolting locus B on chromosome 2 and was inherited independently from semel- or iteroparous reproduction. Furthermore, we found that seasonal bolting time is a highly heritable trait (h 2 > 0.84), which is primarily controlled by two major QTL located on chromosome 4 and 9. Late bolting alleles of both loci act in a partially recessive manner and were identified in both iteroparous pollinators. We observed an additive interaction of both loci for bolting delay. The QTL region on chromosome 4 encompasses the floral promoter gene BvFT2, whereas the QTL on chromosome 9 co-localizes with the BR 1 locus, which controls post-winter bolting resistance. Our findings are applicable for marker-assisted sugar beet breeding regarding early bolting to accelerate generation cycles and late bolting to develop bolting-resistant spring and winter beets. Unexpectedly, one population segregated also for dwarf growth that was found to be controlled by a single locus on chromosome 9.

Keywords

Quantitative Trait Locus Sugar Beet Vernalization Requirement Selfing Progeny Repeated Reproduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Claudia Havel, Hanna Winter, Lara Wostupatsch, Graziella Podda and Monika Bruisch for support and technical assistance in the lab, greenhouse and field. We thank Friedrich Utz for analytic support and thank Gina Capistrano-Goßmann and Christian Jung for helpful discussions. This project was funded through the priority program SPP 1530 of the German Research Foundation (DFG, Grant No. TR 1088/1-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2017_2916_MOESM1_ESM.pdf (137 kb)
Supplementary material 1 (PDF 136 kb)

References

  1. Abegg FA (1936) A genetic factor for the annual habit in beets and linkage relationship. J Agric Res 53:493–511Google Scholar
  2. Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639CrossRefPubMedGoogle Scholar
  3. Blümel M, Dally N, Jung C (2015) Flowering time regulation in crops—what did we learn from Arabidopsis? Curr Opin Biotechnol 32:121–129CrossRefPubMedGoogle Scholar
  4. Boudry P, Mörchen M, Saumitou-Laprade P, Vernet P, Van Dijk H (1993) The origin and evolution of weed beets: consequences for the breeding and release of herbicide resistant transgenic sugar beets. Theor Appl Genet 87:471–478CrossRefPubMedGoogle Scholar
  5. Broccanello C, Stevanato P, Biscarini F, Cantu D, Saccomani M (2015) A new polymorphism on chromosome 6 associated with bolting tendency in sugar beet. BMC Genet 16:1CrossRefGoogle Scholar
  6. Büttner B, Abou-Elwafa SF, Zhang W, Jung C, Müller AE (2010) A survey of EMS-induced biennial Beta vulgaris mutants reveals a novel bolting locus which is unlinked to the bolting gene B. Theor Appl Genet 121:1117–1131CrossRefPubMedGoogle Scholar
  7. Capovilla G, Schmid M, Posé D (2014) Control of flowering by ambient temperature. J Exp Bot 66(1):59–69CrossRefPubMedGoogle Scholar
  8. Dally N, Xiao K, Holtgräwe D, Jung C (2014) The B2 flowering time locus of beet encodes a zinc finger transcription factor. Proc Natl Acad Sci 111:10365–10370CrossRefPubMedPubMedCentralGoogle Scholar
  9. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52CrossRefPubMedGoogle Scholar
  10. Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549CrossRefPubMedGoogle Scholar
  11. El-Mezawy A, Dreyer F, Jacobs G, Jung C (2002) High-resolution mapping of the bolting gene B of sugar beet. Theor Appl Genet 105:100–105CrossRefPubMedGoogle Scholar
  12. Friedman J, Rubin MJ (2015) All in good time: understanding annual and perennial strategies in plants. Am J Bot 102:497–499CrossRefPubMedGoogle Scholar
  13. Hallauer AR, Carena MJ, de Filho JBM (1988) Quantitative genetics in maize breeding, vol 6. Handbook of plant breeding. Iowa State University Press, Oxford, pp 383–423Google Scholar
  14. Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, McGrath JM, Lloyd AM (2012) The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet 44:816–820CrossRefPubMedGoogle Scholar
  15. Hautekèete NC, Piquot Y, Van Dijk H (2001) Investment in survival and reproduction along a semelparity-iteroparity gradient in the Beta species complex. J Evol Biol 14:795–804CrossRefGoogle Scholar
  16. Hautekèete NC, Piquot Y, Van Dijk H (2002) Life span in Beta vulgaris ssp. maritima: the effects of age at first reproduction and disturbance. J Ecol 90:508–516CrossRefGoogle Scholar
  17. Hébrard C, Peterson DG, Willems G, Delaunay A, Jesson B, Lefèbvre M, Barnes S, Maury S (2016) Epigenomics and bolting tolerance in sugar beet genotypes. J Exp Bot 67:207–225CrossRefPubMedGoogle Scholar
  18. Hoffmann CM, Kluge-Severin S (2011) Growth analysis of autumn and spring sown sugar beet. Eur J Agron 34:1–9CrossRefGoogle Scholar
  19. Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573CrossRefPubMedGoogle Scholar
  20. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  22. Langer SM, Longin CFH, Würschum T (2014) Flowering time control in European winter wheat. Front Plant Sci 5:537CrossRefPubMedPubMedCentralGoogle Scholar
  23. Letschert JPW (1993) Beta section beta : biogeographical patterns of variation and taxonomy. Wagening Agric Univ Pap 93:1–155Google Scholar
  24. Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K (2015) Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genom 16:1CrossRefGoogle Scholar
  25. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492CrossRefPubMedGoogle Scholar
  26. Mutasa-Göttgens ES, Qi A, Zhang W, Schulze-Buxloh G, Jennings A, Hohmann U, Müller AE, Hedden P (2010) Bolting and flowering control in sugar beet: relationships and effects of gibberellin, the bolting gene B and vernalization. AoB Plants 2010:plq012CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pajoro A, Biewers S, Dougali E, Valentim FL, Mendes MA, Porri A, Coupland G, Van de Peer Y, van Dijk AD, Colombo L (2014) The (r) evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. J Exp Bot 65:4731–4745CrossRefPubMedGoogle Scholar
  28. Pfeiffer N, Tränkner C, Lemnian I, Grosse I, Müller AE, Jung C, Kopisch-Obuch FJ (2014) Genetic analysis of bolting after winter in sugar beet (Beta vulgaris L.). Theor Appl Genet 127:2479–2489CrossRefPubMedGoogle Scholar
  29. Pfeiffer N, Müller AE, Jung C, Kopisch-Obuch F (2017) QTL for delayed bolting after winter detected in leaf beet (Beta vulgaris L.). Plant Breed 136(2):237–244CrossRefGoogle Scholar
  30. Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400CrossRefPubMedGoogle Scholar
  31. Pin PA, Zhang W, Vogt SH, Dally N, Büttner B, Schulze-Buxloh G, Jelly NS, Chia TY, Mutasa-Göttgens ES, Dohm JC, Himmelbauer H, Weisshaar B, Kraus J, Gielen JJ, Lommel M, Weyens G, Wahl B, Schechert A, Nilsson O, Jung C, Kraft T, Müller AE (2012) The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Curr Biol CB 22:1095–1101CrossRefPubMedGoogle Scholar
  32. Ritz C, Pipper C, Yndgaard F, Fredlund K, Steinrucken G (2010) Modelling flowering of plants using time-to-event methods. Eur J Agron 32:155–161CrossRefGoogle Scholar
  33. Saghai-Maroof M, Soliman K, Jorgensen RA, Allard R (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014CrossRefPubMedPubMedCentralGoogle Scholar
  34. Salome PA, Bomblies K, Laitinen RA, Yant L, Mott R, Weigel D (2011) Genetic architecture of flowering-time variation in Arabidopsis thaliana. Genetics 188:421–433CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tränkner C, Lemnian IM, Emrani N, Pfeiffer N, Tiwari SP, Kopisch-Obuch FJ, Vogt SH, Müller AE, Schilhabel M, Grosse I (2016) A detailed analysis of the BR 1 locus suggests a new mechanism for bolting after winter in sugar beet (Beta vulgaris L.). Front Plant Sci 7:1662CrossRefPubMedPubMedCentralGoogle Scholar
  36. Trap-Gentil MV, Hébrard C, Lafon-Placette C, Delaunay A, Hagege D, Joseph C, Brignolas F, Lefèbvre M, Barnes S, Maury S (2011) Time course and amplitude of DNA methylation in the shoot apical meristem are critical points for bolting induction in sugar beet and bolting tolerance between genotypes. J Exp Bot 62:2585–2597CrossRefPubMedGoogle Scholar
  37. Utz H (2012) PlabMQTL-Software for meta-QTL analysis with composite interval mapping. Version 05 s. PlabMQTL manual. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, GermanyGoogle Scholar
  38. Van Dijk H (2009) Ageing effects in an iteroparous plant species with a variable life span. Ann Bot 104:115–124CrossRefPubMedPubMedCentralGoogle Scholar
  39. Van Dijk H, Hautekèete NC (2014) Evidence of genetic change in the flowering phenology of sea beets along a latitudinal cline within two decades. J Evol Biol 27:1572–1581CrossRefPubMedGoogle Scholar
  40. Van Ooijen JW (2006) JoinMap® 4, software for calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  41. Wagmann K, Hautekèete NC, Piquot Y, Van Dijk H (2010) Potential for evolutionary change in the seasonal timing of germination in sea beet (Beta vulgaris ssp. maritima) mediated by seed dormancy. Genetica 138:763–773CrossRefPubMedGoogle Scholar
  42. Wang J-W (2014) Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot 65:4723–4730CrossRefPubMedGoogle Scholar
  43. Wang R, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, Alonso-Blanco C, Coupland G, Albani MC (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423-U138Google Scholar
  44. Woods DP, Bednarek R, Bouché F, Gordon SP, Vogel JP, Garvin DF, Amasino RM (2017) Genetic architecture of flowering-time variation in Brachypodium distachyon. Plant Physiol 173(1):269–279CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Conny Tränkner
    • 1
    • 5
  • Nina Pfeiffer
    • 1
    • 6
  • Martin Kirchhoff
    • 1
    • 7
  • Friedrich J. Kopisch-Obuch
    • 1
    • 8
  • Henk van Dijk
    • 2
  • Markus Schilhabel
    • 3
  • Mario Hasler
    • 4
  • Nazgol Emrani
    • 1
  1. 1.Plant Breeding InstituteUniversity of KielKielGermany
  2. 2.Universite Lille, CNRS, UMR 8198 - Evo-Eco-PaleoLilleFrance
  3. 3.Institute of Clinical Molecular BiologyUniversity of KielKielGermany
  4. 4.Lehrfach VariationsstatistikUniversity of KielKielGermany
  5. 5.Leibniz Institute of Vegetable and Ornamental CropsErfurtGermany
  6. 6.KWS LOCHOW GMBHNortheimGermany
  7. 7.Nordsaat Saatzucht GmbHLangensteinGermany
  8. 8.KWS SAAT SEEinbeckGermany

Personalised recommendations