Skip to main content
Log in

Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A new genomic model that incorporates genotype × environment interaction gave increased prediction accuracy of untested hybrid response for traits such as percent starch content, percent dry matter content and silage yield of maize hybrids.

Abstract

The prediction of hybrid performance (HP) is very important in agricultural breeding programs. In plant breeding, multi-environment trials play an important role in the selection of important traits, such as stability across environments, grain yield and pest resistance. Environmental conditions modulate gene expression causing genotype × environment interaction (G × E), such that the estimated genetic correlations of the performance of individual lines across environments summarize the joint action of genes and environmental conditions. This article proposes a genomic statistical model that incorporates G × E for general and specific combining ability for predicting the performance of hybrids in environments. The proposed model can also be applied to any other hybrid species with distinct parental pools. In this study, we evaluated the predictive ability of two HP prediction models using a cross-validation approach applied in extensive maize hybrid data, comprising 2724 hybrids derived from 507 dent lines and 24 flint lines, which were evaluated for three traits in 58 environments over 12 years; analyses were performed for each year. On average, genomic models that include the interaction of general and specific combining ability with environments have greater predictive ability than genomic models without interaction with environments (ranging from 12 to 22%, depending on the trait). We concluded that including G × E in the prediction of untested maize hybrids increases the accuracy of genomic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bernardo R (1994) Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci 34:20–25

    Article  Google Scholar 

  • Bernardo R (1996a) Best linear unbiased prediction of maize single-cross performance. Crop Sci 36:50–56. doi:10.2135/cropsci1996.00111183X003600010009x

    Article  Google Scholar 

  • Bernardo R (1996b) Best linear unbiased prediction of the performance of crosses in maize. Crop Sci 41:68–71. doi:10.2135/cropsci2001.41168x

    Article  Google Scholar 

  • Bernardo R (1999) Marker-assisted best linear unbiased prediction of single-cross performance. Crop Sci 39:1277–1282

    Article  Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, Woodbury

    Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84(2):210–223. doi:10.1016/j.ajhg.2009.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

    Article  Google Scholar 

  • Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R Package Sommer. Plos One 11(6):e0156744. doi:10.1371/journal.pone.0156744

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, de los Campos G, Mahuku G, Dreisigacker D, Magorokosho C (2011) Genomic selection and prediction in plant breeding. J Crop Improv 25:239–261

    Article  Google Scholar 

  • Dawson JC, Endelman JB, Heslot N, Crossa J, Poland J et al (2013) The use of unbalanced historical data for genomic selection in an international wheat breeding program. Field Crops Res 154:12–22

    Article  Google Scholar 

  • de los Campos G, Pérez-Rodríguez P (2016) BGLR: Bayesian generalized linear regression. R package v. 1.0.5

  • de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL (2013) Whole genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. Plant Breed Rev Part 2(24):109–152

    Google Scholar 

  • Federer WT, Raghavarao D (1975) On augmented designs. Biometrics 31:29–35

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741

    Article  CAS  PubMed  Google Scholar 

  • Golob GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Heslot N, Akdemir D, Sorrells ME, Jannink JL (2014) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor App Genet 127(2):463–480

    Article  Google Scholar 

  • Jarquín D, Crossa J, Lacaze X, Cheyron PD, Daucourt J et al (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607

    Article  PubMed  Google Scholar 

  • Kadam DC, Potts SM, Bohn MO, Lipka A, Lorenz AJ (2016) Genomic prediction of single crosses in the early stages of a maize hybrid breeding pipeline. G3 Genes Genom Genet 6:3443–3453. doi:10.1534/g3.116.031286

    Google Scholar 

  • Lehermeier C, Krämer N, Bauer E, Bauland C, Camisan C et al (2014) Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction. Genetics 198:3–16

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Cruz M, Crossa J, Bonnet D, Dreisigacker S, Poland J, Jannink L-L, Singh RP, Autrique E, de los Campos G (2015) Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model. G3 Genes Genom Genet. doi:10.1534/g3.114.016097

    Google Scholar 

  • Massman J, Gordillo A, Lorenzana RE, Bernardo R (2013) Genome-wide predictions from maize single-cross data. Theor Appl Genet 126:13–22. doi:10.1007/s00122-012-1955

    Article  PubMed  Google Scholar 

  • Meuwissen, THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Rodríguez P, de los Campos G (2014) Genome-wide regression & prediction with the BGLR statistical package. Genetics 198:483–495

    Article  Google Scholar 

  • Pérez-Rodríguez P, Crossa J, Bondalapati K, De Meyer G, Pita F, de los Campos G (2015) A pedigree-based reaction norm model for prediction of cotton yield in multi-environment trials. Crop Sci 55(3):1143–1151

    Article  Google Scholar 

  • Piepho HP (2009) Ridge regression and extensions for genome-wide selection in maize. Crop Sci 49(4):1165–1176

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 4 Apr 2017

  • Rodríguez-Ramilo ST, García-Cortés LA, Rodríguez de Cara MA (2015) Artificial selection with traditional of genomic relationships: consequences in coancestry and genetic diversity. Front Genet 6:127. doi:10.3389/fgene.2015.00127

    PubMed  PubMed Central  Google Scholar 

  • Schrag TA, Möhring J, Melchinger AE, Kusterer B, Dhillon BS, Piepho HP, Frisch M (2010) Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor Appl Genet 120(2):451–461

    Article  CAS  PubMed  Google Scholar 

  • Technow F, Melchinger AE (2013) Genomic prediction of dichotomous traits with Bayesian logistic models. Theor Appl Genet 125(6):1133–1143

    Article  Google Scholar 

  • Technow F, Riedelsheimer E, Schrag TA, Melchinger AE (2012) Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Theor Appl Genet 125(6):1181–1194

    Article  PubMed  Google Scholar 

  • Technow F, Schrag A, Schipprack W, Bauer E, Simianer H, Melchinger AE (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  • van Eeuwijk FA, Boer MP et al (2010) Mixed model approaches for the identification of QTLs within a maize hybrid breeding program. Theor Appl Genet 120:429–440

    Article  PubMed  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Zhu D, Zhang Q (2014) Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc Natl Acad Sci 11(34):12456–12461. doi:10.1073/pnas.1413750111

    Article  Google Scholar 

  • Zhao Y, Zeng J, Fernando R, Reif J (2013) Genomic prediction of hybrid wheat performance. Crop Sci 53:1–9. doi:10.2135/cropsci2012.08.0463

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the positive and detailed comments from two anonymous reviewers and the time invested by the Associated Editor handling the manuscript. These contributions significantly improved the quality and clarity of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulino Pérez-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Matthias Frisch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta-Pech, R., Crossa, J., de los Campos, G. et al. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids. Theor Appl Genet 130, 1431–1440 (2017). https://doi.org/10.1007/s00122-017-2898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2898-0

Keywords

Navigation