Theoretical and Applied Genetics

, Volume 130, Issue 4, pp 807–818 | Cite as

Fine mapping of RYMV3: a new resistance gene to Rice yellow mottle virus from Oryza glaberrima

  • Hélène Pidon
  • Alain Ghesquière
  • Sophie Chéron
  • Souley Issaka
  • Eugénie Hébrard
  • François Sabot
  • Olufisayo Kolade
  • Drissa Silué
  • Laurence Albar
Original Article

Abstract

Key message

A new resistance gene againstRice yellow mottle viruswas identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene.

Abstract

Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.

Keywords

Fine mapping RYMV Rice Oryza glaberrima Resistance NB-LRR 

Supplementary material

122_2017_2853_MOESM1_ESM.pdf (467 kb)
Populations derived from the IR64 x Tog5307 cross and used for the mapping of the RYMV3 gene. Backcrosses were performed using resistant F1 plants as donors and the susceptible O. sativa variety IR64 as recurrent parent. The generations used for the analysis of resistance segregation and RYMV3 mapping and fine mapping are indicated on the right. For resistance segregation analysis, the number of resistant (R) and susceptible (S) plants is indicated for each tested progeny (PDF 467 KB)

References

  1. Abubakar Z, Ali F, Pinel A, Traoré O, N‘Guessan P, Notteghem J-L, Kimmins F, Konaté G, Fargette D (2003) Phylogeography of Rice yellow mottle virus in Africa. J Gen Virol 84:733–743. doi:10.1099/vir.0.18759-0 CrossRefPubMedGoogle Scholar
  2. Albar L, Bangratz-Reyser M, Hébrard E, Ndjiondjop MN, Jones M, Ghesquière A (2006) Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J 47:417–426. doi:10.1111/j.1365-313X.2006.02792.x CrossRefPubMedGoogle Scholar
  3. Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–792. doi:10.1105/tpc.11.5.781 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boisnard A, Albar L, Thiémélé DE, Rondeau M, Ghesquière A (2007) Evaluation of genes from eIF4E and eIF4G multigenic families as potential candidates for partial resistance QTLs to Rice yellow mottle virus in rice. Theor Appl Genet 116:53–62. doi:10.1007/s00122-007-0646-6 CrossRefPubMedGoogle Scholar
  5. Boualem A, Dogimont C, Bendahmane A (2016) The battle for survival between viruses and their host plants. Curr Opin Virol 17:32–38. doi:10.1016/j.coviro.2015.12.001 CrossRefPubMedGoogle Scholar
  6. Bouet A, Amancho AN, Kouassi N, Anguete K (2013) Comportement de nouvelles lignées isogéniques de riz irrigué dotées du gène de résistance (rymv1) au RYMV en Afrique de l’ouest: situation en Côte d’Ivoire. Int J Biol Chem Sci 7:1221–1233. doi:10.4314/ijbcs.v7i3.28 CrossRefGoogle Scholar
  7. Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584. doi:10.1105/tpc.9.9.1573 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2046. doi:10.1105/tpc.12.11.2033 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chandra-Shekara AC, Gupte M, Navarre D, Raina S, Raina R, Klessig D, Kachroo P (2006) Light-dependent hypersensitive response and resistance signaling against Turnip crinkle virus in Arabidopsis. Plant J 45:320–334. doi:10.1111/j.1365-313X.2005.02618.x CrossRefPubMedGoogle Scholar
  11. Collmer CW, Marston MF, Taylor JC, Jahn M (2000) The I gene of bean: a dosage-dependent allele conferring extreme resistance, hypersensitive resistance, or spreading vascular necrosis in response to the potyvirus Bean common mosaic virus. Mol Plant Microbe In 13:1266–1270. doi:10.1094/MPMI.2000.13.11.1266 CrossRefGoogle Scholar
  12. Droc G, Périn C, Fromentin S, Larmande P (2009) OryGenesDB 2008 update: database interoperability for functional genomics of rice. Nucleic Acids Res 37:D992–D995. doi:10.1093/nar/gkn821 CrossRefPubMedGoogle Scholar
  13. Fargette D, Pinel A, Halimi H, Brugidou C, Fauquet C, Van RM (2002) Comparison of molecular and immunological typing of isolates of Rice yellow mottle virus. Arch Virol 147:583–596. doi:10.1007/s007050200008 CrossRefPubMedGoogle Scholar
  14. Fargette D, Pinel A, Abubakar Z, Traoré O, Brugidou C, Fatogoma S, Hébrard E, Choisy M, Séré Y, Fauquet C, Konaté G (2004) Inferring the evolutionary history of Rice yellow mottle virus from genomic, phylogenetic, and phylogeographic studies. J Virol 78:3252–3261. doi:10.1128/JVI.78.7.3252 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fargette D, Pinel A, Rakotomalala M, Sangu E, Traoré O, Sérémé D, Sorho F, Issaka S, Hébrard E, Séré Y, Kanyeka Z, Konaté G (2008) Rice yellow mottle virus, an RNA plant virus, evolves as rapidly as most RNA animal viruses. J Virol 82:3584–3589. doi:10.1128/JVI.02506-07 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Farnham G, Baulcombe DC (2006) Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proc Natl Acad Sci USA 103:18828–18833. doi:10.1073/pnas.0605777103 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Garavito A, Guyot R, Lozano J, Gavory F, Samain S, Panaud O, Tohme J, Ghesquière A, Lorieux M (2010) A genetic model for the female sterility barrier between Asian and African cultivated rice species. Genetics 185:1425–1440. doi:10.1534/genetics.110.116772 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gu Y, Zebell SG, Liang Z, Wang S, Kang B-H, Dong X (2016) Nuclear pore permeabilization is a convergent signaling event in effector-triggered immunity. Cell 166:1–13. doi:10.1016/j.cell.2016.07.042 CrossRefGoogle Scholar
  19. Hébrard E, Pinel-Galzi A, Bersoult A, Siré C, Fargette D (2006) Emergence of a resistance-breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome-linked viral protein VPg. J Gen Virol 87:1369–1373. doi:10.1099/vir.0.81659-0 CrossRefPubMedGoogle Scholar
  20. Hébrard E, Poulicard N, Gérard C, Traoré O, Wu HC, Albar L, Fargette D, Bessin Y, Vignols F (2010) Direct interaction between the Rice yellow mottle virus (RYMV) VPg and the central domain of the rice eIF(iso)4G1 factor correlates with rice susceptibility and RYMV virulence. Mol Plant Microbe In 23:1506–1513. doi:10.1094/MPMI-03-10-0073 CrossRefGoogle Scholar
  21. Issaka S, Basso A, Sorho F, Onasanya A, Haougui A, Sido AY, Aké S, Fargette D, Séré Y (2012) Diagnosis and importance of rice yellow mottle disease epidemics in Niger republic. J Appli Biosci 50:3501–3511Google Scholar
  22. Kam H, Laing M, Ouoba J (2013) Rice traits preferred by farmers and their perceptions of Rice yellow mottle virus (RYMV) disease in Cascades Region of Burkina Faso. Afr J Agric Res 8:2703–2712. doi:10.5897/AJAR12.1723 Google Scholar
  23. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (N Y) 6:4. doi:10.1186/1939-8433-6-4
  24. Kobayashi K, Sekine KT, Nishiguchi M (2014) Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance? J Gen Plant Pathol 80:327–336. doi:10.1007/s10327-014-0527-1 CrossRefGoogle Scholar
  25. Lecoq H, Moury B, Desbiez C, Palloix A, Pitrat M (2004) Durable virus resistance in plants through conventional approaches: a challenge. Virus Res 100:31–39. doi:10.1016/j.virusres.2003.12.012 CrossRefPubMedGoogle Scholar
  26. Linares OF (2002) African rice (Oryza glaberrima): history and future potential. P Natl Acad Sci USA 99:16360–16365. doi:10.1073/pnas.252604599 CrossRefGoogle Scholar
  27. Liu X, Lin F, Wang L, Pan Q (2007) The in Silico Map-Based Cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176:2541–2549. doi:10.1534/genetics.107.075465 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lorieux M, Ndjiondjop MN, Ghesquière A (2000) A first interspecific Oryza sativa x Oryza glaberrima microsatellite-based genetic linkage map. Theor Appl Genet 100:593–601. doi:10.1007/s001229900061 Google Scholar
  29. N’guessan P, Pinel A, Caruana ML, Frutos R, Sy A, Ghesquiere A, Fargette D (2000) Evidence of the presence of two serotypes of Rice yellow mottle sobemovirus in Côte d’Ivoire. Eur J Plant Pathol 106:167–178. doi:10.1023/A:1008792109954 CrossRefGoogle Scholar
  30. Ndjiondjop M-N, Albar L, Fargette D, Fauquet C, Ghesquière A (1999) The genetic basis of high resistance to Rice yellow mottle virus (RYMV) in cultivars of two cultivated rice species. Plant Dis 83:931–935. doi:10.1007/s001229900061 CrossRefGoogle Scholar
  31. Ndjiondjop MN, Albar L, Sow M, Yao N, Djedatin G, Thiémélé D, Ghesquière A (2013) Integration of molecular markers in rice improvement: a case study on resistance to Rice yellow mottle virus. In: Wopereis M, Johnson D, Ahmadi N, et al. (eds) Realizing Africa’s Rice Promise. CABI, pp 161–172Google Scholar
  32. Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615. doi:10.1016/S0168-9525(02)02820-2 CrossRefPubMedGoogle Scholar
  33. Ochola D, Tusiime G (2011) Survey on incidences and severity of Rice yellow mottle virus disease in Eastern Uganda. International Journal of Plant Pathology 2:15–25. doi:10.3923/ijpp.2011.15.25 CrossRefGoogle Scholar
  34. Orjuela J, Thiémélé D, Kolade O, Chéron S, Ghesquière A, Albar L (2013) A recessive resistance to Rice yellow mottle virus is associated with a rice homolog of the CPR5 gene, a regulator of active defense mechanisms. Mol Plant Microbe In 26:1455–1463. doi:10.1094/MPMI-05-13-0127-R CrossRefGoogle Scholar
  35. Orjuela J, Sabot F, Chéron S, Vigouroux Y, Adam H, Chrestin H, Sanni K, Lorieux M, Ghesquière A (2014) An extensive analysis of the African rice genetic diversity through a global genotyping. Theor Appl Genet 127:2211–2223. doi:10.1007/s00122-014-2374-z CrossRefPubMedGoogle Scholar
  36. Ouibrahim L, Mazier M, Estevan J, Pagny G, Decroocq V, Desbiez C, Moretti A, Gallois JL, Caranta C (2014) Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J 79:705–716. doi:10.1111/tpj.12586 CrossRefPubMedGoogle Scholar
  37. Pinel A, N’Guessan P, Bousalem M, Fargette D (2000) Molecular variability of geographically distinct isolates of Rice yellow mottle virus in Africa. Arch Virol 145:1621–1638. doi:10.1007/s007050070080 CrossRefPubMedGoogle Scholar
  38. Pinel-Galzi A, Rakotomalala M, Sangu E, Sorho F, Kanyeka Z, Traoré O, Sérémé D, Poulicard N, Rabenantoandro Y, Séré Y, Konaté G, Ghesquière A, Hébrard E, Fargette D (2007) Theme and variations in the evolutionary pathways to virulence of an RNA plant virus species. PLOS Pathog 3:e180. doi:10.1371/journal.ppat.0030180 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pinel-Galzi A, Traoré O, Séré Y, Hébrard E, Fargette D (2015) The biogeography of viral emergence: Rice yellow mottle virus as a case study. Curr Opin Virol 10:7–13. doi:10.1016/j.coviro.2014.12.002 CrossRefPubMedGoogle Scholar
  40. Pinel-Galzi A, Dubreuil-Tranchant C, Hébrard E, Mariac C, Ghesquière A Albar L (2016) Mutations in Rice yellow mottle virus polyprotein P2a involved in RYMV2 gene resistance breakdown. Front Plant Sci. 71779 10.3389/fpls.2016.01779Google Scholar
  41. Poque S, Pagny G, Ouibrahim L, Chague A, Eyquard JP, Caballero M, Candresse T, Caranta C, Mariette S, Decroocq V (2015) Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana. BMC Plant Biol 15:159. doi:10.1186/s12870-015-0559-5 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Poulicard N, Pinel-Galzi A, Traoré O, Vignols F, Ghesquière A, Konaté G, Hébrard E, Fargette D (2012) Historical contingencies modulate the adaptability of Rice yellow mottle virus. PLOS Pathog 8:e1002482. doi:10.1371/journal.ppat.1002482 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Quenouille J, Montarry J, Palloix A, Moury B (2013) Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown. Mol Plant Pathol 14:109–118. doi:10.1111/j.1364-3703.2012.00834.x CrossRefPubMedGoogle Scholar
  44. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945. doi:10.1093/bioinformatics/16.10.944 CrossRefPubMedGoogle Scholar
  45. Sanfaçon H (2015) Plant translation factors and virus resistance. Viruses 7:3392–3419. doi:10.3390/v7072778 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schatz MC, Maron LG, Stein JC, Wences AH, Gurtowski J, Biggers E, Lee H, Kramer M, Antoniou E, Ghiban E, Wright MH, Chia JM, Ware D, McCouch SR, McCombie WR (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genom Biol 15:506. doi:10.1186/s13059-014-0506-z Google Scholar
  47. Sekine KT, Tomita R, Takeuchi S, Atsumi G, Saitoh H, Mizumoto H, Kiba A, Yamaoka N, Nishiguchi M, Hikichi Y, Kobayashi K (2012) Functional differentiation in the leucine-rich repeat domains of closely related plant virus-resistance proteins that recognize common avr proteins. Mol Plant Microbe In 25:1219–1229. doi:10.1094/MPMI-11-11-0289 CrossRefGoogle Scholar
  48. Takken FLW, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Cur Opin Plant Biol 15:375–384. doi:10.1016/j.pbi.2012.05.001 CrossRefGoogle Scholar
  49. Thiémélé DE, Boisnard A, Ndjiondjop MN, Chéron S, Séré Y, Aké S, Ghesquière A, Albar L (2010) Identification of a second major resistance gene to Rice yellow mottle virus, RYMV2, in the African cultivated rice species, O. glaberrima. Theor Appl Genet 121:169–179. doi:10.1007/s00122-010-1300-2 CrossRefPubMedGoogle Scholar
  50. Tomita R, Sekine KT, Mizumoto H, Sakamoto M, Murai J, Kiba A., Hikichi Y, Suzuki K, Kobayashi K (2011) Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Mol Plant Microbe In 24:108–117. doi:10.1094/MPMI-06-10-0127 CrossRefGoogle Scholar
  51. Traoré O, Pinel-Galzi A, Sorho F, Sarra S, Rakotomalala M, Sangu E, Kanyeka Z, Séré Y, Konaté G, Fargette D (2009) A reassessment of the epidemiology of Rice yellow mottle virus following recent advances in field and molecular studies. Virus Res 141:258–267. doi:10.1016/j.virusres.2009.01.011 CrossRefPubMedGoogle Scholar
  52. Traoré O, Pinel-Galzi A, Issaka S, Poulicard N, Aribi J, Aké S, Ghesquière A, Séré Y, Konaté G, Hébrard E, Fargette D (2010) The adaptation of Rice yellow mottle virus to the eIF(iso)4G-mediated rice resistance. Virology 408:103–108. doi:10.1016/j.virol.2010.09.007 CrossRefPubMedGoogle Scholar
  53. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74. doi:10.1093/nar/gkm30 CrossRefPubMedPubMedCentralGoogle Scholar
  54. VanderPlank JE (1968) Disease resistance in plants. Academic, New YorkGoogle Scholar
  55. Wang S, Gu Y, Zebell SG, Anderson LK, Wang W, Mohan R, Dong X (2014a) A noncanonical role for the CKI-RB-E2F cell-cycle signaling pathway in plant effector-triggered immunity. Cell Host Microbe 16:787–794. doi:10.1016/j.chom.2014.10.005
  56. Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, Zuccolo A, Song X, Kudrna D, Ammiraju JSS, Cossu RM, Maldonado C, Chen J, Lee S, Sisneros N, de Baynast K, Golser W, Wissotski M, Kim W, Sanchez P, Ndjiondjop MN, Sanni K, Long M, Carney J, Panaud O, Wicker T, Machado CA, Chen M, Mayer KFX, Rounsley S, Wing RA (2014b) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46:982–988. doi:10.1038/ng.3044
  57. Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, Qin T, Li Y, Che J, Zhang M, Yang B, Liu Y, Zhao K (2015) XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant 8:290–302. doi:10.1016/j.molp.2014.10.010 CrossRefPubMedGoogle Scholar
  58. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120. doi:10.1126/science.291.5501.118 CrossRefPubMedGoogle Scholar
  59. Zhu Y, Qian W, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLOS Pathog 6:e1000844. doi:10.1371/journal.ppat.1000844 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Plant Diversity Adaptation and Development Research UnitInstitut de Recherche pour le Développement – Université de MontpellierMontpellierFrance
  2. 2.Interactions Plantes Microorganismes EnvironnementInstitut de Recherche pour le Développement – Centre de Coopération Internationale en Recherche Agronomique pour le Développement – Université de MontpellierMontpellierFrance
  3. 3.Africa Rice CenterCotonouBenin
  4. 4.FSAE, Université de TillabériTillabériNiger
  5. 5.International Institute of Tropical AgricultureIbadanNigeria

Personalised recommendations