Advertisement

Theoretical and Applied Genetics

, Volume 130, Issue 4, pp 795–806 | Cite as

Fine-mapping qFS07.1 controlling fiber strength in upland cotton (Gossypium hirsutum L.)

  • Xiaomei Fang
  • Xueying Liu
  • Xiaoqin Wang
  • Wenwen Wang
  • Dexin Liu
  • Jian Zhang
  • Dajun Liu
  • Zhonghua Teng
  • Zhaoyun Tan
  • Fang Liu
  • Fengjiao Zhang
  • Maochao Jiang
  • Xiuling Jia
  • Jianwei Zhong
  • Jinghong Yang
  • Zhengsheng Zhang
Original Article

Abstract

Key message

qFS07.1 controlling fiber strength was fine-mapped to a 62.6-kb region containing four annotated genes. RT-qPCR and sequence of candidate genes identified an LRR RLK gene as the most likely candidate.

Abstract

Fiber strength is an important component of cotton fiber quality and is associated with other properties, such as fiber maturity, fineness, and length. Stable QTL qFS07.1, controlling fiber strength, had been identified on chromosome 7 in an upland cotton recombinant inbred line (RIL) population from a cross (CCRI35 × Yumian1) described in our previous studies. To fine-map qFS07.1, an F2 population with 2484 individual plants from a cross between recombinant line RIL014 and CCRI35 was established. A total of 1518 SSR primer pairs, including 1062, designed from chromosome 1 of the Gossypium raimondii genome and 456 from chromosome 1 of the G. arboreum genome (corresponding to the QTL region) were used to fine-map qFS07.1, and qFS07.1 was mapped into a 62.6-kb genome region which contained four annotated genes on chromosome A07 of G. hirsutum. RT-qPCR and comparative analysis of candidate genes revealed a leucine-rich repeat protein kinase (LRR RLK) family protein to be a promising candidate gene for qFS07.1. Fine mapping and identification of the candidate gene for qFS07.1 will play a vital role in marker-assisted selection (MAS) and the study of mechanism of cotton fiber development.

Keywords

Quantitative Trait Locus Cotton Fiber Quantitative Trait Locus Region Fiber Strength Fiber Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31271770 and 31571720) and National science and technology major projects of China (No. 2016ZX08005003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that this study complies with the current laws of the countries in which the experiments were performed.

Supplementary material

122_2017_2852_MOESM1_ESM.doc (81 kb)
Supplementary material 1 (DOC 81 KB)
122_2017_2852_MOESM2_ESM.doc (1.8 mb)
Supplementary material 2 (DOC 1826 KB)
122_2017_2852_MOESM3_ESM.doc (772 kb)
Supplementary material 3 (DOC 772 KB)
122_2017_2852_MOESM4_ESM.xls (25 kb)
Supplementary material 4 (XLS 25 KB)
122_2017_2852_MOESM5_ESM.xls (32 kb)
Supplementary material 5 (XLS 32 KB)
122_2017_2852_MOESM6_ESM.xls (28 kb)
Supplementary material 6 (XLS 28 KB)
122_2017_2852_MOESM7_ESM.xls (24 kb)
Supplementary material 7 (XLS 24 KB)

References

  1. Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54:911–929CrossRefPubMedGoogle Scholar
  2. Barrero JM, Cavanagh C, Verbyla KL, Tibbits JFG, Verbyla AP, Huang BE, Gubler F (2015) Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genom Biol 16(1):1CrossRefGoogle Scholar
  3. Bolon YT, Joseph B, Cannon SB, Graham MA, Diers BW, Farmer AD, May GD, Muehlbauer GJ, Specht JE, Tu ZJ, Weeks N, Xu WW, Shoemaker RC, Vance CP (2010) Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biol 10:41CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bradow JM, Davidonis GH (2000) Quantitation of fiber quality and the cotton production-processing interface: a physiologist’s perspective. J Cotton Sci 4:34–64Google Scholar
  5. Cao ZB, Zhu XF, Chen H, Zhang TZ (2015) Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line. Mol Breed 35:215CrossRefGoogle Scholar
  6. Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang TZ, Guo WZ, Chen XY, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Deynze AV, Zhu YX, Yu SX, Abdurakhmonov I, Katageri I, Kumar PA, Rahman M, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310CrossRefPubMedPubMedCentralGoogle Scholar
  7. Davis LA, Addicott FT (1972) Abscisic acid: correlation with abscission and with development in the cotton fruit. Plant Physiol 49:644–648CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deng FL, Tu LL, Tan JF, Li Y, Nie YC, Zhang XL (2012) GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiol 158:890–904CrossRefPubMedGoogle Scholar
  9. Fang L, Tian RP, Chen JD, Wang S, Li XH, Wang P, Zhang TZ (2014b) Transcriptomic analysis of fiber strength in Upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments. PLoS One 9:e94642Google Scholar
  10. Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu J (2014a) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genom 15:397Google Scholar
  11. Gokani SJ, Kumar R, Thaker VS (1998) Potential role of abscisic acid in cotton fiber and ovule development. J Plant Growth Regul 17:1–5CrossRefGoogle Scholar
  12. Hamann T (2015) The plant cell wall integrity maintenance mechanism-a case study of a cell wall plasma membrane signaling network. Phytochem 112:100–109CrossRefGoogle Scholar
  13. Harpaz-Saad S, McFarlane HE, Xu S, Divi UK, Forward B, Western TL, Kieber JJ (2011) Cellulose synthesis via the FEI2 RLK/ SOS5 pathway and cellulose synthase 5 is required for the structure of seed coat mucilage in Arabidopsis. Plant J 68:941–953CrossRefPubMedGoogle Scholar
  14. Huang JF, Chen F, Wu SY, Li J, Xu W (2016) Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. Sci China. Life Sci 59(2):194–205CrossRefGoogle Scholar
  15. Huang GQ, Gong SY, Xu WL, Li W, Li P, Zhang CJ, Li DD, Zheng Y, Li FG, Li XB (2013) A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiol 161:1278–1290CrossRefPubMedPubMedCentralGoogle Scholar
  16. Islam MS, Zeng LH, Thyssen GN, Christoher DD, Kim HJ, Li P, Fang DD (2016) Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes. Theor Appl Genet 129(6):1071–1086CrossRefPubMedGoogle Scholar
  17. Jiang YJ, Guo WZ, Zhu HY, Ruan YL, Zhang TZ (2012) Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotech J 10:301–312CrossRefGoogle Scholar
  18. Kim HJ, Murai N, Fang DD, Triplett BA (2011) Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues. Plant sci 180(2):323–332CrossRefPubMedGoogle Scholar
  19. Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  21. Kraszewska E (2008) The plant Nudix hydrolase family. Acta Biochim Pol 55(4):663–671PubMedGoogle Scholar
  22. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124(3):743–756PubMedPubMedCentralGoogle Scholar
  23. Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fiber development. Ann Bot (Lond) 100(7):1391–1401CrossRefGoogle Scholar
  24. Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wu JY, Liang XM, Huang G, Percy RG, Liu K, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye XL, Liu X, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, Zhang H, Sun FM, Wang XF, Liang Jie, Wang JH, He Q, Huang LH, Wang J, Cui JJ, Song GL, Wang KB, Xu X, Yu JZ, Zhu YX, Yu SX (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutumTM-1) provides insights into genome evolution. Nat biotech 33(5):524–530CrossRefGoogle Scholar
  25. Li FG, Fan GY, Wang KB, Sun FM, Yuan YL, Song GL, Li Q, Ma ZY, Lu CR, Zou CS, Chen WB, Liang XM, Shang HH, Liu WQ, Shi CC, Xiao GH, Gou CY, Ye WW, Xu X, Zhang XY, Wei HL, Li ZF, Zhang GY, Wang JY, Liu K, Kohel R, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572CrossRefPubMedGoogle Scholar
  26. Li DD, Ruan XM, Zhang J, Wu YJ, Wang XL, Li XB (2013) Cotton plasma membrane intrinsic protein 2 s (PIP2s) selectively interact to regulate their water channel activities and are required for fiber development. New Phytol 199:695–707CrossRefPubMedGoogle Scholar
  27. Li YL, Sun J, Xia GX (2005) Cloning and characterization of a gene for an LRR receptor-like protein kinase associated with cotton fiber development. Mol Genet Genom 273:217–224.CrossRefGoogle Scholar
  28. Li Y, Tu LL, Pettolino FA, Ji SM, Hao J, Yuan DJ, Deng FL, Tan JF, Hu HY, Wang Q, Llewellyn DJ, Zhang XL (2016) GbEXPATR, a species-specific expansin, enhances cotton fiber elongation through cell wall restructuring. Plant biotech J 14(3):951–963.CrossRefGoogle Scholar
  29. Liu DX, Zhang J, Liu XY, Wang WW, Liu DJ, Teng ZH, Fang XM, Tan ZY, Tang SY, Yang JH, Zhong JW, Zhang ZS (2016) Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T 1 region in upland cotton. BMC genom 17(1):1Google Scholar
  30. Liu BL, Zhu YC, Zhang TZ (2015a) The R3-MYB gene GhCPC negatively regulates cotton fiber elongation. PloS One 10(2): e0116272.Google Scholar
  31. Liu X, Zhao B, Zheng HJ, Hu Y, Lu G, Yang CQ, Chen JD, Chen JJ, Chen DY, Zhang L, Zhou Y, Wang LJ, Guo WZ, Bai YL, Ruan JX, Shangguan XX, Mao YB, Shan CM, Jiang JP, Zhu YQ, Jin L, Kang H, Chen ST, He XL, Wang R, Wang YZ, Chen J, Wang LJ, Yu ST, Wang BY, Wei J, Song SC, Lu XY, Gao ZC, Gu WY, Deng X, Ma D, Wang S, Liang WH, Fang L, Cai CP, Zhu XF, Zhou BL, Chen ZJ, Xu SH, Zhang YG, Wang SY, Zhang TZ, Zhao GP, Chen XY (2015b) Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5:1413Google Scholar
  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2– ∆∆CT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  33. Lv FN, Wang HH, Wang XY, Han LB, Ma YP, Wang S, Feng ZD, Niu XW, Cai CP, Kong ZS, Zhang TZ, Guo WZ (2015) GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fiber cell initiation and elongation. J Exp Bot 66(7):1877–1889CrossRefPubMedPubMedCentralGoogle Scholar
  34. Machado A, Wu YR, Yang YM, Llewellyn DJ, Dennis ES (2009) The MYB transcription factor GhMYB25 regulates early fiber and trichome development. Plant J 59:52–62CrossRefPubMedGoogle Scholar
  35. Monclus R, Leplé JC, Bastien C, Bert PF, Villar M, Marron N, Brignolas F, Jorge V (2012) Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp. BMC Plant Biol 12:173CrossRefPubMedPubMedCentralGoogle Scholar
  36. Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol 6(4):339–342CrossRefPubMedGoogle Scholar
  37. Munis MF, Tu L, Deng F, Tan J, Xu L, Xu S, Long L, Zhang X (2010) A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commu 393:38–44CrossRefGoogle Scholar
  38. Niu EL, Cai CP, Zheng YJ, Shang XG, Fang L, Guo WZ (2016) Genome-wide analysis of CrRLK1L gene family in Gossypium and identification of candidate CrRLK1L genes related to fiber development. Mol Genet Genom: 1–18Google Scholar
  39. Ogawa T, Yoshimura K, Miyake H, Ishikawa K, Ito D, Tanabe N, Shigeoka S (2008) Molecular characterization of organelle-type Nudix hydrolases in Arabidopsis. Plant Physiol 148(3):1412–1424CrossRefPubMedPubMedCentralGoogle Scholar
  40. Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, ur Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang X, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibers. Nature 492:423–427CrossRefPubMedGoogle Scholar
  41. Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11(5):213–216CrossRefPubMedGoogle Scholar
  42. Said JI, Song MZ, Wang HT, Lin, ZX, Zhang XL, Fang DD, Zhang JF (2015). A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genom 290(3), 1003–1025CrossRefGoogle Scholar
  43. Shan CM, Shangguan XX, Zhao B, Zhang XF, Chao LM, Yang CQ, Wang LJ, Zhu HY, Zeng YD, Guo WZ, Zhou BL, Hu GJ, Guan XY, Chen ZJ, Wendel JF, Zhang TZ, Chen XY (2014) Control of cotton fiber elongation by a homeodomain transcription factor GhHOX3. Nat commu 5:5519CrossRefGoogle Scholar
  44. Shang LG, Liang QZ, Wang YM, Wang XC, Wang KB, Abduweli A, Ma LL, Cai SH, Hua JP (2015) Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton (Gossypium hirsutum L.). Euphytica 205:877–888CrossRefGoogle Scholar
  45. Song D, Xi W, Shen J, Bi T, Li L (2011) Characterization of the plasma membrane proteins and receptor-like kinases associated with secondary vascular differentiation in poplar. Plant Mol Biol 76:97–115CrossRefPubMedPubMedCentralGoogle Scholar
  46. Su CF, Wang W, Qiu XM, Yang L, Li S (2013) Fine-mapping a fiber strength QTL QFS-D11-1 on cotton chromosome 21 using introgressed lines. Plant Breed 132:725–730CrossRefGoogle Scholar
  47. Sun X, Gong SY, Nie XY, Li Y, Li W, Huang GQ, Li, XB (2015) A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis. Physiol Plant 154:420–432CrossRefPubMedGoogle Scholar
  48. Sun FD, Zhang JH, Wang SF, Gong WK, Shi YZ, Liu AY, Li JW, Gong JW, Shang HH, Yuan YL (2012) QTL mapping for fiber quality traits across multiple generations and environments in Upland cotton. Mol Breed 30:569–582CrossRefGoogle Scholar
  49. Suzuki T, Ishikawa K, Yamashino T, Mizuno T (2002) An Arabidopsis histidine-containing phosphotransfer (HPt) factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. Plant Cell Physiol 43(1):123–129CrossRefPubMedGoogle Scholar
  50. Suzuki T, Sakurai K, Imamura A, Nakamura A, Ueguchi C, Mizuno T (2000) Compilation and characterization of histidine-containing phosphotransmitters implicated in His-to-Asp phosphorelay in plants: AHP signal transducers of Arabidopsis thaliana. Biosci Biotech Bioch 64(11):2486–2489CrossRefGoogle Scholar
  51. Tan ZY, Fang XM, Tang SY, Zhang J, Liu DJ, Teng ZH, Li L, Ni HJ, Zheng FM, Liu DX, Zhang TF, Paterson AH, Zhang ZZ (2015) Genetic map and QTL controlling fiber quality traits in Upland cotton (Gossypium hirsutum L.). Euphytica 203:615–628CrossRefGoogle Scholar
  52. Tang SY, Teng ZH, Zhai TF, Fang XM, Liu F, Liu DX, Wang SF, Zhang K, Shao QS, Tan ZY, Paterson AH, Zhang ZZ (2015) Construction of genetic map and QTL analysis of fiber quality traits for Upland cotton (Gossypium hirsutum L.). Euphytica 201:195–213CrossRefGoogle Scholar
  53. Tang WX, Tu LL, Yang XY, Tan JF, Deng FL, Hao J, Guo K, Lindsey K, Zhang XL (2014) The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol 202:509–520CrossRefPubMedGoogle Scholar
  54. Van Ooijen JW (2006) JoinMap 4.0: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  55. Van Ooijen J (2009) MapQTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, WageningenGoogle Scholar
  56. Voorrips R (2002) MapChart: software for the graphical presentationof linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  57. Walford SA, Wu YR, Llewellyn DJ, Dennis ES (2011) GhMYB25-like: a key factor in early cotton fibre development. Plant J 65:785–797CrossRefPubMedGoogle Scholar
  58. Walford SA, Wu YR, Llewellyn DJ, Dennis ES (2012) Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J 71:464–478PubMedGoogle Scholar
  59. Wang L, Cook A, Patrick JW, Chen XY, Ruan YL (2014) Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling. Plant J 78:686–696CrossRefPubMedGoogle Scholar
  60. Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tör A, Zipfel C, de Wit PJ, Jones JD, Tör M, Thomma BP (2008) A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol 147(2):503–517CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang HY, Wang J, Gao P, Jiao GL, Zhao PM, Li Y, Wang GL, Xia GX (2009) Down-regulation ofGhADF1gene expression affects cotton fiber properties. Plant biotech J 7(1):13–23CrossRefGoogle Scholar
  62. Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, Yue Z, Cong L, Shang HH, Zhu SL, Zou CS, Li Q, Yuan YL, Lu CR, Wei HL, Gou CY, Zheng ZQ, Yin Y, Zhang XY, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat genet 44(10):1098–1103CrossRefPubMedGoogle Scholar
  63. Wang FR, Xu ZZ, Sun R, Gong YC, Liu GD, Zhang JX, Wang LM, Zhang CY, Fan SJ, Zhang J (2013a) Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Mol breed 32(3):547–562Google Scholar
  64. Wang JH, Kucukoglu M, Zhang LB, Chen P, Decker D, Nilsson O, Jones B, Sandberg G, Zheng B (2013b) The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway. BMC Plant Biol 13:94Google Scholar
  65. Xu SL, Rahman A, Baskin TI, Kieber JJ (2008) Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20:3065–3079CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yang X, Wang Y, Zhang G, Wang X, Wu L, Ke H, Liu H, Ma Z (2016) Detection and validation of one stable fiber strength QTL on c9 in tetraploid cotton. Mol Genet Genom 291(4):1625–1638CrossRefGoogle Scholar
  67. Yang MY, Xu CN, Wang BM, Jia JZ (2001) Effects of plant growth regulators on secondary wall thickening of cotton fibers. Plant Growth Regul 35(3):233–237CrossRefGoogle Scholar
  68. Yang ZR, Zhang CJ, Yang XJ, Liu K, Wu ZX, Zhang XY, Zheng Wu, Xun QQ, Liu CL, Lu LL, Yang ZE, Qian YY, Xu ZZ, Li CF, Li J, Li FG (2014) PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol 203:437–444CrossRefPubMedGoogle Scholar
  69. Yuan DJ, Tang ZH, Wang MJ, Gao WH, Tu LL, Jin X, Chen LL, He YH, Zhang L, Zhu LF, Li Y, Liang QQ, Lin ZX, Yang XY, Liu N, Jin SX, Lei Y, Ding YH, Li GL, Ruan XA, Ruan YJ, Zhang XL (2015) The genome sequence of SeaIsland cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 5(6):17662Google Scholar
  70. Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Zhang JB, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu BL, Liu CX, Wang S, Pan MQ, Wang YK, Wang DW, Ye WX, Chang LJ, Zhang WP, Song QX, Kirkbride RC, Chen XY, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu XY, Zhang H, Wu HT, Zhou L, Mei GF, Chen SQ, Tian Y, Xiang D, Li XH, Ding J, Zuo QY, Tao LN, Liu YC, Li J, Lin Y, Hui YY, Cao ZS, Cai CP, Zhu XF, Jiang Z, Zhou BL, Guo WZ, Li RQ, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotech 33:531–537Google Scholar
  71. Zhang ZS, Hu MC, Zhang J, Liu DJ, Zheng J, Zhang K, Wang W, Wan Q (2009) Construction of a comprehensive PCR based marker linkage map and QTL mapping for fiber quality traits in Upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61CrossRefGoogle Scholar
  72. Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Pei Y (2005) Construction of a genetic linkage map and QTL analysis of fiber-related traits in Upland cotton (Gossypium hirsutum L.). Euphytica 144:91–99CrossRefGoogle Scholar
  73. Zhang K, Zhang J, Ma J, Tang SY, Liu DJ, Teng ZH, Liu DX, Zhang ZZ (2012) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in Upland cotton (Gossypium hirsutum L.). Mol breed 29(2):335–348CrossRefGoogle Scholar
  74. Zhao J, Gao Y, Zhang Z, Chen TZ, Guo WZ and Zhang TZ. 2013. A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. BMC plant Biol 13(1):1CrossRefGoogle Scholar
  75. Zhou Y, Zhang ZT, Li M, Wei XZ, Li XJ, Li BY, Li XB (2015) Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fiber initiation and elongation by modulating brassinosteroid signaling. Plant Biotech J 13(2):269–280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiaomei Fang
    • 1
  • Xueying Liu
    • 1
  • Xiaoqin Wang
    • 1
  • Wenwen Wang
    • 1
  • Dexin Liu
    • 1
  • Jian Zhang
    • 1
  • Dajun Liu
    • 1
  • Zhonghua Teng
    • 1
  • Zhaoyun Tan
    • 1
  • Fang Liu
    • 1
  • Fengjiao Zhang
    • 1
  • Maochao Jiang
    • 1
  • Xiuling Jia
    • 1
  • Jianwei Zhong
    • 1
  • Jinghong Yang
    • 1
  • Zhengsheng Zhang
    • 1
  1. 1.Engineering Research Center of South Upland Agriculture, Ministry of EducationSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations