Advertisement

Theoretical and Applied Genetics

, Volume 130, Issue 3, pp 505–514 | Cite as

Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella herpotrichoides) in European winter wheat (Triticum aestivum L.) and fine-mapping of Pch1

  • Christine D. Zanke
  • Bernd Rodemann
  • Jie Ling
  • Quddoos H. Muqaddasi
  • Jörg Plieske
  • Andreas Polley
  • Sonja Kollers
  • Erhard Ebmeyer
  • Viktor Korzun
  • Odile Argillier
  • Gunther Stiewe
  • Thomas Zschäckel
  • Martin W. Ganal
  • Marion S. RöderEmail author
Original Article

Abstract

Key message

Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars.

Abstract

Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2 = 0.91. A total of 108 SSR and 235 SNP marker–trait associations (MTAs) were identified by considering associations with a −log10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.

Keywords

Wheat Variety Winter Wheat Variety Spring Wheat Variety European Winter Wheat Eyespot Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was funded by the Plant Biotechnology program of the German Federal Ministry of Education and Research (BMBF) within the frame of the projects GABI-Wheat, VALID and SELECT (Project Numbers 0315067, 0315947 and 0315949).

Compliance with ethical standards

Conflict of interest

SK, VK and EE are employed by the company KWS LOCHOW GMBH, OA is employed by Syngenta France S.A.S., GS and TZ are employed by Syngenta Seeds GmbH and MG, JP and AP are employed by the company TraitGenetics GmbH. The companies have commercial interest in the results for application in variety development and for the provision of genotyping services. This does not alter the authors’ adherence to all TAG policies on sharing data and materials. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

122_2016_2830_MOESM1_ESM.xlsx (23 kb)
Supplementary material 1 (XLSX 23 kb)
122_2016_2830_MOESM2_ESM.pdf (190 kb)
Supplementary material 2 (PDF 190 kb)
122_2016_2830_MOESM3_ESM.xlsx (39 kb)
Supplementary material 3 (XLSX 40 kb)
122_2016_2830_MOESM4_ESM.xlsx (55 kb)
Supplementary material 4 (XLSX 56 kb)
122_2016_2830_MOESM5_ESM.pdf (192 kb)
Supplementary material 5 (PDF 192 kb)
122_2016_2830_MOESM6_ESM.xlsx (294 kb)
Supplementary material 6 (XLSX 295 kb)
122_2016_2830_MOESM7_ESM.xlsx (53 kb)
Supplementary material 7 (XLSX 53 kb)

References

  1. Bartels G, Backhaus GF (2000) Testing of crop cultivars for resistance to noxious organisms at the Federal Biological Research Centre. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem, Heft 373:24–27Google Scholar
  2. Burt C, Nicholson P (2011) Exploiting co-linearity among grass species to map the Aegilops ventricosa-derived Pch1 eyespot resistance in wheat and establish its relationship to Pch2. Theor Appl Genet 123:1387–1400CrossRefPubMedGoogle Scholar
  3. Burt C, Hollins TW, Powell N, Nicholson P (2010) Differential seedling resistance to eyespot pathogens, Oculimacula yallundae and Oculimacula acuformis, conferred by Pch2 in wheat among accessions of Triticum monococcum. Plant Pathol 59:819–828CrossRefGoogle Scholar
  4. Burt C, Hollins TW, Nicholson P (2011) Identification of a QTL conferring seedling and adult plant resistance to eyespot on chromosome 5A of Capelle Desprez. Theor Appl Genet 122:119–128CrossRefPubMedGoogle Scholar
  5. Burt C, Griffe LL, Ridolfini AP, Orford S, Griffiths S, Nicholson P (2014) Mining the Watkins collection of wheat landraces for novel eyespot resistance. Plant Pathol 63:1241–1250CrossRefGoogle Scholar
  6. Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chapman NH, Burt C, Dong H, Nicholson P (2008) The development of PCR-based markers for the selection of eyespot resistance genes Pch1 and Pch2. Theor Appl Genet 117:425–433CrossRefPubMedGoogle Scholar
  8. de la Pena RC, Murray TD, Jones SS (1997) Identification of an RFLP interval containing Pch2 on chromosome 7AL of wheat. Genome 40:249–252CrossRefPubMedGoogle Scholar
  9. Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32CrossRefPubMedGoogle Scholar
  10. Groenewald JZ, Marais AS, Marais GF (2003) Amplified fragment length polymorphism-derived microsatellite sequence linked to the Pch1 and Ep-D1 loci in common wheat. Plant Breeding 122:83–85CrossRefGoogle Scholar
  11. Huguet-Robert V, Dedryver F, Röder MS, Korzun V, Abérlard P, Tanguy AM, Jaudeau B, Jahier J (2001) Isolation of a chromosomally engineered durum wheat line carrying the Aegilops ventricosa Pch1 gene for resistance to eyespot. Genome 44:345–349CrossRefPubMedGoogle Scholar
  12. Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013) Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). PLoS ONE 8:e57500CrossRefPubMedPubMedCentralGoogle Scholar
  13. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363CrossRefPubMedGoogle Scholar
  14. Leonard JM, Watson CJW, Carter AH, Hansen JL, Zemetra RS, Santra DK, Campbell KG, Riera-Lizarazu O (2008) Identification of candidate gene for the wheat endopeptidase Ep-D1 locus and two other STS markers linked to the eyespot resistance gene Pch1. Theor Appl Genet 116:261–270CrossRefPubMedGoogle Scholar
  15. Leroux P, Gredt M (1997) Evolution of fungicide resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis in France. Pestic Sci 51:321–327CrossRefGoogle Scholar
  16. McMillian DE, Allan RE, Roberts DE (1986) Association of an isozyme locus and strawbreaker foot rot resistance derived from Aegilops ventricosa in wheat. Theor Appl Genet 72:743–747Google Scholar
  17. Murray TD, de la Peña RC, Yildirim A, Jones SS (1994) A new source of resistance to Pseudocercosporella herpotrichoides, cause of eyespot disease of wheat, located on chromosome 4 V of Dasypyrum villosum. Plant Breed 113:281–286CrossRefGoogle Scholar
  18. Parnell S, Gilligan CA, Lucas JA, Bock CH, van den Bosch F (2008) Changes in fungicide sensitivity and relative species abundance in Oculimacula yallundae and O. acuformis populations (eyespot disease of cereals) in Western Europe. Plant Pathol 57:509–517CrossRefGoogle Scholar
  19. Pasquariello M, Ham J, Burt C, Jahier J, Paillard S, Uauy C, Nicholson P (2016) The eyespot resistance genes Pch1 and Pch2 of wheat are not homeoloci. Theor Appl Genet (online). doi: 10.1007/s00122-016-2796-x Google Scholar
  20. Ray RV, Crook MJ, Jenkinson P, Edwards SG (2006) Effect of eyespot caused by Oculimacula yallundae and O. acuformis, assessed visually and by competitive PCR, on stem strength associated with lodging resistance and yield of winter wheat. J Exp Bot 57:2249–2257CrossRefPubMedGoogle Scholar
  21. Sheng H, See DR, Murray TD (2012) Mapping QTL for resistance to eyespot of wheat in Aegilops longissima. Theor Appl Genet 125:355–366CrossRefPubMedGoogle Scholar
  22. Spannagl M, Martis MM, Pfeifer M, Nussbaumer T, Mayer KFX (2013) Analysing complex Triticeae genomes—concepts and strategies. Plant Methods 9:35CrossRefPubMedPubMedCentralGoogle Scholar
  23. The International Wheat Genome Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid wheat (Triticum aestivum) genome. Science 345Google Scholar
  24. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 SNP array. Plant Biotechnol J 12:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wulff BHB, Moscou MJ (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Frontiers Plant Sci 5:692CrossRefGoogle Scholar
  26. Yildirim A, Jones SS, Murray TD, Cox TS, Line RF (1995) Resistance to stripe rust and eyespot diseases of wheat in Triticum tauschii. Plant Dis 79:1230–1236CrossRefGoogle Scholar
  27. Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann K, Ganal MW, Röder MS (2014a) Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS ONE 9:e113287CrossRefPubMedPubMedCentralGoogle Scholar
  28. Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Ganal MW, Röder MS (2014b) Genetic architecture of main effect QTL for heading date in European winter wheat. Frontiers Plant Sci 5:217CrossRefGoogle Scholar
  29. Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillie O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal MW, Röder MS (2015) Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Frontiers. Plant Sci 6:644Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christine D. Zanke
    • 1
  • Bernd Rodemann
    • 2
  • Jie Ling
    • 1
    • 3
  • Quddoos H. Muqaddasi
    • 1
  • Jörg Plieske
    • 4
  • Andreas Polley
    • 4
  • Sonja Kollers
    • 5
  • Erhard Ebmeyer
    • 5
  • Viktor Korzun
    • 5
  • Odile Argillier
    • 6
  • Gunther Stiewe
    • 7
  • Thomas Zschäckel
    • 7
  • Martin W. Ganal
    • 4
  • Marion S. Röder
    • 1
    Email author
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Julius Kühn Institute (JKI)BrunswickGermany
  3. 3.Institute of Precision Medicine, Xiangya HospitalCentral South UniversityHunan ShengPeople’s Republic of China
  4. 4.TraitGenetics GmbHGaterslebenGermany
  5. 5.KWS LOCHOW GmbHBergenGermany
  6. 6.Syngenta France S.A.S.OrgerusFrance
  7. 7.Syngenta Seeds GmbHBad SalzuflenGermany

Personalised recommendations