Theoretical and Applied Genetics

, Volume 130, Issue 1, pp 213–222 | Cite as

Multi-environment QTL mapping reveals genetic architecture of fruit cracking in a tomato RIL Solanum lycopersicum × S. pimpinellifolium population

  • Carmen Capel
  • Fernando J. Yuste-Lisbona
  • Gloria López-Casado
  • Trinidad Angosto
  • Jesús Cuartero
  • Rafael Lozano
  • Juan Capel
Original Article


Key message

QTL and codominant genetic markers for fruit cracking have been identified in a tomato genetic map derived from a RIL population, providing molecular tools for marker-assisted breeding of this trait.


In tomato, as well as in other fleshy fruits, one of the main disorders that widely limit quality and production is fruit cracking or splitting of the epidermis that is observed on the fruit skin and flesh at any stage of fruit growth and maturation. To elucidate the genetic basis of fruit cracking, a quantitative trait loci (QTL) analysis was conducted in a recombinant inbred line (RIL) population derived from a cross between tomato (Solanum lycopersicum) and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit cracking during three consecutive growing seasons. Construction of a high-density linkage map based on codominant markers, covering more than 1000 cM of the whole genome, led to the identification of both main and epistatic QTL controlling fruit cracking on the basis of a single-environment as well as multiple-environment analysis. This information will enhance molecular breeding for novel cracking resistant varieties and simultaneously assist the identification of genes underlying these QTL, helping to reveal the genetic basis of fruit cracking in tomato.


Quantitative Trait Locus Recombinant Inbred Line Quantitative Trait Locus Analysis Tomato Fruit Expansin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the projects TRA2009-0375 and AGL2013-49090-C2-1-R from the Spanish Ministerio de Economía y Competitividad and UE-FEDER Program. We also thank research facilities provided by the Campus de Excelencia Internacional Agroalimentario (CeiA3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abbott JD, Peet MM, Willits DH, Sanders DC, Gough RE (1986) Effects of irrigation frequency and scheduling on fruit production and radial fruit cracking in greenhouse tomatoes in soil beds and in a soil-less medium in bags. Scientia Hort 28:209–219. doi: 10.1016/0304-4238(86)90002-6 CrossRefGoogle Scholar
  2. Alba JM, Montserrat M, Fernández-Muñoz R (2009) Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses ofwild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Exp Appl Acarol 47:35–47. doi: 10.1007/s10493-008-9192-4 CrossRefPubMedGoogle Scholar
  3. Ballester AR, Molthoff J, de Vos R, Hekkert B, Orzaez D, Fernández-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152:71–84. doi: 10.1104/pp.109.147322 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barrantes W, Lopez-Casado G, García-Martínez S, Alonso A, Rubio F, Ruiz JJ, Fernández-Muñoz R, Granell A, Monforte AJ (2016) Exploring new alleles involved in tomato fruit quality in an introgression line library of Solanum pimpinellifolium. Front Plant Sci. doi: 10.3389/fpls.2016.01172 PubMedPubMedCentralGoogle Scholar
  5. Capel C, Fernández del Carmen A, Alba JM, Lima-Silva V, Hernández-Gras F, Salinas M, Boronat A, Angosto T, Botella MA, Fernández-Muñoz R, Granell A, Capel J, Lozano R (2015) Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theor Appl Genet 128:2019–2035. doi: 10.1007/s00122-015-2563-4 CrossRefPubMedGoogle Scholar
  6. Cotner SD, Burns EE, Leeper PW (1969) Pericarp anatomy of crack-resistant and susceptible tomato fruits. J Am Soc Hort Sci 94:136–137Google Scholar
  7. Cuartero J, Palomares G, Balasch S, Nuez F (1981) Tomato fruit cracking under plastic-house and in the open air. II. General and specific combining abilities. Genetics and breeding of tomato. In: Proceedings of the Meeting Eucarpia Tomato Working Group, Avignon, p 91–98Google Scholar
  8. deVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596PubMedPubMedCentralGoogle Scholar
  9. Domínguez E, España L, López-Casado G, Cuartero J, Heredia A (2009) Biomechanics of isolated tomato (Solanum lycopersicum) fruit cuticles during ripening: the role of flavonoids. Funct Plant Biol 36:613–620. doi: 10.1071/FP09039 CrossRefGoogle Scholar
  10. España L, Heredia-Guerrero JA, Reina-Pinto JJ, Fernández-Muñoz R, Heredia A, Domínguez E (2014) Transient silencing of CHALCONE SYNTHASE during fruit ripening modifies tomato epidermal cells and cuticle properties. Plant Physiol 166:1371–1386. doi: 10.1104/pp.114.246405 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fernandez-Muñoz R, Dominguez E, Cuartero J (2000) A novel source of resistance to the two-spotted spider mite in Lycopersicon pimpinellifolium Jusl. Mill.: its genetics as affected by interplot interference. Euphytica 111:169–173. doi: 10.1023/A:1003893432676 CrossRefGoogle Scholar
  12. Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31:93–123. doi: 10.1080/07352689.2011.616057 CrossRefGoogle Scholar
  13. Frary A, Fulton TM, Zamir D, Tanksley SD (2004) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496. doi: 10.1007/s00122-003-1422-x CrossRefPubMedGoogle Scholar
  14. Giménez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R, Angosto T (2015) Transcriptional activity of the MADS box ARLEQUIN/TOMATO AGAMOUS-LIKE1 gene is required for cuticle development of tomato fruit. Plant Physiol 168:1036–1048. doi: 10.1104/pp.15.00469 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst 91:317–331. doi: 10.1093/jnci/91.4.317 CrossRefPubMedGoogle Scholar
  16. Hovav R, Chehanovsky N, Moy M, Jetter R, Schaffer AA (2007) The identification of a gene (Cwp1), silenced during Solanum evolution, which causes cuticle microfissuring and dehydration when expressed in tomato fruit. Plant J 52:627–639. doi: 10.1111/j.1365-313X.2007.03265.x CrossRefPubMedGoogle Scholar
  17. Khadivi-Khub A (2015) Physiological and genetic factors influencing fruit cracking. Acta Physiol Plant 37:1718. doi: 10.1007/s11738-014-1718-2 CrossRefGoogle Scholar
  18. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175. doi: 10.1111/j.1469-1809.1943.tb02321.x CrossRefGoogle Scholar
  19. Leonardi C, Ambrosino P, Esposito F, Fogliano V (2000) Antioxidant activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J Agric Food Chem 48:4723–4727. doi: 10.1021/jf000225t CrossRefPubMedGoogle Scholar
  20. López-Casado G, Matas AJ, Domínguez E, Cuartero J, Heredia A (2007) Biomechanics of isolated tomato (Solanum lycopersicum L.) fruit cuticles: the role of the cutin matrix and polysaccharides. J Exp Bot 58:3875–3883. doi: 10.1016/j.tplants.2006.12.001 CrossRefPubMedGoogle Scholar
  21. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63. doi: 10.1093/jxb/erg214 CrossRefPubMedGoogle Scholar
  22. McElroy JP, Zhang W, Koehler KJ, Lamont SJ, Dekkers JC (2006) Comparison of methods for analysis of selective genotyping survival data. Genet Sel Evol 38:637–655. doi: 10.1186/1297-9686-38-6-637 PubMedPubMedCentralGoogle Scholar
  23. Moctezuma E, Smith DL, Gross KC (2003) Antisense suppression of a beta-galactosidase gene (TB G6) in tomato increases fruit cracking. J Exp Bot 54:2025–2033. doi: 10.1093/jxb/erg214 CrossRefPubMedGoogle Scholar
  24. Peet MM (1992) Fruit cracking in tomato. Hort Technol 2:216–223Google Scholar
  25. Powell ALT, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas K, Ashrafi H, Pons C, Fernández-Muñoz R, Vicente A, Lopez-Baltazar J, Barry CS, Liu Y, Chetelat R, Granell A, Van Deynze A, Giovannoni JJ, Bennett AB (2012) Uniform ripening encodes a golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336:1711–1715. doi: 10.1126/science.1222218 CrossRefPubMedGoogle Scholar
  26. Prudent M, Causse M, Génard M, Tripodi P, Grandillo S, Bertin N (2009) Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection. J Exp Bot 60:923–937. doi: 10.1093/jxb/ern338 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216. doi: 10.1016/j.phrs.2007.01.012 CrossRefPubMedGoogle Scholar
  28. Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132. doi: 10.1007/s00122-010-1517-0 CrossRefPubMedGoogle Scholar
  29. Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol 44:357–384. doi: 10.1146/annurev.pp.44.060193.002041 CrossRefGoogle Scholar
  30. Riederer M, Schreiber L (2001) Protecting against water loss, analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032. doi: 10.1093/jexbot/52.363.2023 CrossRefPubMedGoogle Scholar
  31. Robertson LD, Labate JA (2007) Genetic resources of tomato (Lycopersicon esculentum Mill.) and wild relatives. In: Razdan MK, Matoo AK (eds) Genetic improvement of solanaceous crops, vol. 2. Tomato, Science Publishers, New Hampshire. doi: 10.1201/b10744-3
  32. Rodríguez-López MJ, Garzo E, Bonani JP, Fereres A, Fernández-Muñoz R, Moriones E (2011) Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology 10:1191–1201. doi: 10.1094/PHYTO-01-11-0028 CrossRefGoogle Scholar
  33. Salinas M, Capel C, Alba JM, Mora B, Cuartero J, Fernández-Muñoz R, Lozano R, Capel J (2013) Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theor Appl Genet 126:83–92. doi: 10.1007/s00122-012-1961-0 CrossRefPubMedGoogle Scholar
  34. Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueen-Mason S, Shieh M, Cosgrove DJ (1995) Molecular cloning and sequence analysis of expansins: a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci USA 92:9245–9249CrossRefPubMedPubMedCentralGoogle Scholar
  35. Skerker JM, Prasol JM, Perchuk BS, Biondi EG, Laub MT (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3:e334. doi: 10.1371/journal.pbio.0030334 CrossRefPubMedPubMedCentralGoogle Scholar
  36. van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, The NetherlandsGoogle Scholar
  37. Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy AA, Riederer M (2004) Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J Exp Bot 55:1401–1410. doi: 10.1093/jxb/erh149 CrossRefPubMedGoogle Scholar
  38. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTL. J Hered 93:77–78. doi: 10.1093/jhered/93.1.77 CrossRefPubMedGoogle Scholar
  39. Walter (1967) Hereditary resistance to disease in tomato. Annu Rev Phytopathol 5:131–162. doi: 10.1146/ CrossRefGoogle Scholar
  40. Wang C, Rutledge J, Gianola D (1994) Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genet Sel Evol 26:91–115. doi: 10.1186/1297-9686-26-2-91 CrossRefPubMedCentralGoogle Scholar
  41. Yang J, Hu C, Hu H,Yu R, Xia Z,Ye X, Zhu J (2008) QTL network: mapping and visualizing genetic architecture of complex trait in experimental populations. Bioinformatics 10:721–723. doi: 10.1093/bioinformatics/btm494 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Carmen Capel
    • 1
  • Fernando J. Yuste-Lisbona
    • 1
  • Gloria López-Casado
    • 2
  • Trinidad Angosto
    • 1
  • Jesús Cuartero
    • 2
  • Rafael Lozano
    • 1
  • Juan Capel
    • 1
  1. 1.Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Edificio CITE II-BUniversidad de AlmeríaAlmeríaSpain
  2. 2.Instituto de Hortofruticultura Subtropical y Mediterránea La MayoraUniversidad de Málaga-Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa MálagaSpain

Personalised recommendations