Advertisement

Theoretical and Applied Genetics

, Volume 130, Issue 1, pp 199–211 | Cite as

QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods

  • Khin Thanda Win
  • Juan Vegas
  • Chunying Zhang
  • Kihwan Song
  • Sanghyeob LeeEmail author
Original Article

Abstract

Key message

QTL mapping using NGS-assisted BSA was successfully applied to an F 2 population for downy mildew resistance in cucumber. QTLs detected by NGS-assisted BSA were confirmed by conventional QTL analysis.

Abstract

Downy mildew (DM), caused by Pseudoperonospora cubensis, is one of the most destructive foliar diseases in cucumber. QTL mapping is a fundamental approach for understanding the genetic inheritance of DM resistance in cucumber. Recently, many studies have reported that a combination of bulked segregant analysis (BSA) and next-generation sequencing (NGS) can be a rapid and cost-effective way of mapping QTLs. In this study, we applied NGS-assisted BSA to QTL mapping of DM resistance in cucumber and confirmed the results by conventional QTL analysis. By sequencing two DNA pools each consisting of ten individuals showing high resistance and susceptibility to DM from a F2 population, we identified single nucleotide polymorphisms (SNPs) between the two pools. We employed a statistical method for QTL mapping based on these SNPs. Five QTLs, dm2.2, dm4.1, dm5.1, dm5.2, and dm6.1, were detected and dm2.2 showed the largest effect on DM resistance. Conventional QTL analysis using the F2 confirmed dm2.2 (R 2 = 10.8–24 %) and dm5.2 (R 2 = 14–27.2 %) as major QTLs and dm4.1 (R 2 = 8 %) as two minor QTLs, but could not detect dm5.1 and dm6.1. A new QTL on chromosome 2, dm2.1 (R 2 = 28.2 %) was detected by the conventional QTL method using an F3 population. This study demonstrated the effectiveness of NGS-assisted BSA for mapping QTLs conferring DM resistance in cucumber and revealed the unique genetic inheritance of DM resistance in this population through two distinct major QTLs on chromosome 2 that mainly harbor DM resistance.

Keywords

Downy Mildew Composite Interval Mapping Bulk Segregant Analysis InDel Marker Putative QTLs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by grants from the Bio-industry Technology Development Program (111057-5) of iPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Funding

This work was supported by grants from the Bio-industry Technology Development Program (111057-5) of iPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry).

Supplementary material

122_2016_2806_MOESM1_ESM.pdf (819 kb)
Supplementary material 1 (PDF 819 kb)
122_2016_2806_MOESM2_ESM.pdf (606 kb)
Supplementary material 2 (PDF 606 kb)

References

  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178CrossRefPubMedGoogle Scholar
  2. Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992CrossRefPubMedPubMedCentralGoogle Scholar
  3. Becker A, Chao DY, Zhang X, Salt DE, Baxter I (2011) Bulk segregant analysis using single nucleotide polymorphism microarrays. PLoS One 6:e15993CrossRefPubMedPubMedCentralGoogle Scholar
  4. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890CrossRefPubMedGoogle Scholar
  5. Call AD, Criswell AD, Wehner TC et al (2012a) Resistance of cucumber cultivars to a new strain of cucurbit downy mildew. HortSci 47:171–178Google Scholar
  6. Call AD, Criswell AD, Wehner TC et al (2012b) Screening cucumber for resistance to downy mildew caused by Pseudoperonospora cubensis (Berk. and Curt.) Rostov. Crop Sci 52:577–592Google Scholar
  7. Catchen J, Amores A, Hohenlohe P, Cresko W, Postlethwait J (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3-Genes Genom Genet 1:171–182Google Scholar
  8. Catchen J, Hohenlohe P, Bassham S, Amores A, Cresko W (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22(11):3124–3140CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen JF, Kirkbride JH Jr (2000) A new synthetic species Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia 52:315–319CrossRefGoogle Scholar
  10. Chen JF, Staub JE, Qian ChT, Jiang JM, Luo XD, Zhuang FY (2003) Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. × Cucumis sativus L. Theor Appl Genet 106:688–695Google Scholar
  11. Dhillon NPS, Pushpinder PS, Ishiki K (1999) Evaluation of landraces of cucumber (Cucumis sativus L.) for resistance to downy mildew (Pseudoperonospora cubensis). Plant Genet Resour Newsl 119:59–61Google Scholar
  12. Dijkhuizen A (1994) Application of restriction fragment length polymorphism for the assessment of genetic variation and study of quantitatively inherited traits in cucumber (Cucumis sativus L.). Ph.D. Dissertation, University of Wisconsin-Madison, p 123Google Scholar
  13. Ding G, Qin Z, Zhou X, Fan J (2007) RAPD and SCAR markers linked to downy mildew resistance genes in cucumber. Acta Bot Boreali-Occident Sin 27:1747–1751 (in Chinese) Google Scholar
  14. Doruchowski RW, Łazkowska-Ryk E (1992) Inheritance of resistance to downy mildew (Pseudoperonospora cubensis Berk. and Curt.) in Cucumis sativus. In: Doruchowski RW (ed) Proceedings of the V Eucarpia Cucurbitaceae Symposium. Skierniewice-Warszawa, Poland, pp 132–138Google Scholar
  15. Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S et al (2010) Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–1042CrossRefPubMedPubMedCentralGoogle Scholar
  16. Epinat C, Pitrat M (1994) Inheritance of resistance to downy mildew (Pseudoperonospora cubensis) in muskmelon (Cucumis melo). I. Analysis of a 8 × 8 diallel table. Agronomie 14:239–248CrossRefGoogle Scholar
  17. Fanourakis NE (1984) Inheritance and linkage studies of the fruit epidermis structure and investigation of linkage relations of several traits and of meiosis in cucumber. Ph.D. Dissertation, University of Wisconsin-MadisonGoogle Scholar
  18. Han Y, Lv P, Hou S, Li S, Ji G, Ma X et al (2015) Combining Next Generation Sequencing with Bulked Segregant Analysis to Fine Map a Stem Moisture Locus in Sorghum (Sorghum bicolor L. Moench). PLoS One 10(5):e0127065. doi: 10.1371/journal.pone.0127065 CrossRefPubMedPubMedCentralGoogle Scholar
  19. He X, Li YH, Pandey S, Yandell BS, Pathak M, Weng Y (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 126:2149–2161CrossRefPubMedGoogle Scholar
  20. Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281CrossRefPubMedGoogle Scholar
  21. Kaminski KP, Korup K, Andersen MN, Sonderkaer M, Andersen MS, Kirk HG, Nielsen KL (2016) Next generation sequencing bulk segregant analysis of potato support that differential flux into the cholesterol and stigmasterol metabolite pools is important for steroidal glycoalkaloid content. Potato Res 59:81–97CrossRefGoogle Scholar
  22. Kozik EU, Klosin´ska U, Call AD, Wehner TC (2013) Heritability and genetic variance estimates for resistance to downy mildew in cucumber accession Ames 2354. Crop Sci 53:177–182Google Scholar
  23. Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Sci USA 84:2363–2367CrossRefGoogle Scholar
  24. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lebeda A, Prasil J (1994) Susceptibility of Cucumis sativus cultivars to Pseudoperonospora cubensis. Acta Phytopathol Entomol Hung 29:89–94Google Scholar
  26. Lee J-S, Han K-S, Lee S-C, Soh J-W (2013) Screening for resistance to downy mildew among major commercial cucumber varieties. Res Dis 19(3):188–195 (in Korean) CrossRefGoogle Scholar
  27. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li Z, Zhang Z, Yan P, Huang S, Fei Z, Lin K (2011) RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genom 12:540CrossRefGoogle Scholar
  29. Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7:e1002255CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mayer C (2006–2010) Phobos 3.3.11. Available at http://www.rub.de/spezzoo/cm/cm_phobos.htm
  31. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nelson JC (1997) QGene: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245CrossRefGoogle Scholar
  33. Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132CrossRefPubMedGoogle Scholar
  34. Olczak-Woltman H, Marcinkowska J, Niemirowicz-Szczytt K (2011) The genetic basis of resistance to downy mildew in Cucumis spp.—latest developments and prospects. J Appl Genetics 52:249–255CrossRefGoogle Scholar
  35. Palti J, Cohen Y (1980) Downy mildew of cucurbits (Pseudoperonospora cubensis). The fungus and its hosts, distribution, epidemiology and control. Phytoparasitica 8:109–147CrossRefGoogle Scholar
  36. Pang X, Zhou X, Wan H, Chen J (2013) QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol 161:536–543CrossRefGoogle Scholar
  37. Ren Y, Zhang Z, Liu J et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4:e5795CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rosen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  39. Rubinstein M, Katzenellenbogen M, Eshed R, Rozen A, Katzir N, Colle M et al (2015) Ultra high-density linkage map for cultivated cucumber using a single nucleotide polymorphism genotyping array. PLoS One 10:e0124101CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen J-E, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551CrossRefPubMedGoogle Scholar
  41. Shimizu S, Kanazawa K, Kato A, Yokota Y, Koyama T (1963) Studies on the breeding of cucumber for resistance to downy mildew. Part 3. Genetic observations for the resistance to downy mildew and other fruit characters. Bull Hort Res Sta A 2:65–81 (in Japanese with English abstract) Google Scholar
  42. Sun JY, Zhang ZH, Zong X, Huang SW, Li ZY, Han YH (2013) A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genom 14:461CrossRefGoogle Scholar
  43. Szczechura W, Staniaszek M, Klosinska U, Kozik EU (2015) Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk. et Curt.) Rostov. in cucumber. Russian J Genet 51:974–979CrossRefGoogle Scholar
  44. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S et al (2013) QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J (on line first). doi: 10.1111/tpj.12105 Google Scholar
  45. Trick M, Adamski NM, Mugford SG, Jiang C-C, Febrer M, Uauy C (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploidy wheat. BMC Plant Biol 12:14CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vandenlangenberg KM (2015) Studies on downy mildew resistance in cucumber (Cucumis sativus L.). Ph.D. Dissertation, University of North Carolina State UniversityGoogle Scholar
  47. Wang Y, VandenLangenberg K, Wehner TC, Kraan PAG, Suelmann J, Zheng X, Owens K, Weng Y (2016) QTL mapping for downy mildew resistance in cucumber inbreed line W17120 (PI 330628). Theor Appl Genet. doi: 10.1007/s00122-016-2719-x PubMedCentralGoogle Scholar
  48. Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J et al (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genom 15:1158. doi: 10.1186/1471-2164-15-1158 CrossRefGoogle Scholar
  49. Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6(5):e1000942CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wolyn DJ, Borevitz JO, Loudet O, Schwartz C, Maloof J et al (2004) Light-response quantitative trait loci identified with composite interval and eXtreme array mapping in Arabidopsis thaliana. Genetics 167:907–917CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yang Z, Huang D, Tang W, Zheng Y, Liang K et al (2013) Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS One 8(7):e68433. doi: 10.1371/journal.pone.0068433 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yoshioka Y, Sakata Y, Sugiyama M, Fukino N (2014) Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 198:265–276CrossRefGoogle Scholar
  53. Zhang WW, Pan JS, He HL, Zhang C, Li Z, Zhao JL, Yuan XJ, Zhu LH, Huang SW, Cai R (2012) Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet 124:249–259CrossRefPubMedGoogle Scholar
  54. Zhang S, Liu MM, Miao H et al (2013) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Plant Genomics Laboratory, Department of Plant Biotechnology, College of Life SciencesSejong UniversitySeoulRepublic of Korea
  2. 2.SESVANDERHAVE BelgiumTienenBelgium
  3. 3.Plant Engineering Research InstituteSejong UniversitySeoulRepublic of Korea

Personalised recommendations