Advertisement

Theoretical and Applied Genetics

, Volume 129, Issue 10, pp 1961–1973 | Cite as

The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit

  • Meiling GaoEmail author
  • Liangliang Hu
  • Yuhong Li
  • Yiqun WengEmail author
Original Article

Abstract

Key message

The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway.

Abstract

The Mg-chelatase catalyzes the insertion of Mg2+ into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.

Keywords

Leaf Color C528 Mutant Golden Leaf Cucumber Chromosome Yellow Green Leaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Kristin Haider for technical help. MG’s work was supported by the National Natural Science Foundation of China (No. 31401891), the Natural Science Foundation of Heilongjiang Province (C201330) and Young Outstanding Faculty Support Program in General Higher Education Institutions of Heilongjiang Province (1155G65). The work in YL’s lab was supported by the National Natural Science Foundation of China (31171955 and 31471891). The research in YW’s lab was supported by US Department of Agriculture Specialty Crop Research Initiative Grant (Project Number 2011-51181-30661).

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing interests.

Supplementary material

122_2016_2752_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1 (XLSX 12 kb)

References

  1. Abul-Hayja Z, Williams PH (1976) Inheritance of two seedling markers in cucumber. Hort Sci 11:145Google Scholar
  2. Braumann I, Stein N, Hansson M (2014) Reduced chlorophyll biosynthesis in heterozygous barley magnesium chelatase mutants. Plant Physiol Biochem 78:10–14CrossRefPubMedGoogle Scholar
  3. Campbell BW, Mani D, Curtin SJ, Slattery RA, Michno JM, Ort DR, Schaus PJ, Palmer RG, Orf JH, Stupar RM (2015) Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3 5:123–131Google Scholar
  4. Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, Kodira CD, Huang SW, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11:569CrossRefGoogle Scholar
  5. Deng XJ, Zhang HQ, Wang Y, Shu ZF, Wang GH et al (2012) Research advances on rice leaf-color mutant genes. Hybrid Rice 27:9–14 (in Chinese) Google Scholar
  6. Deng XJ, Zhang HQ, Wang Y, He F, Liu JL, Xiao X, Wang GL (2014) Mapped clone and functional analysis of leaf-color gene ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One 9:e99564CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dong H, Fei GL, Wu CY, Wu FQ, Sun YY, Chen MJ, Ren YL, Zhou KN, Cheng ZJ, Wang JL, Jiang L, Zhang X, Guo XP, Lei CL, Su N, Wang H, Wan JM (2013) A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol 162:1867–1880CrossRefPubMedPubMedCentralGoogle Scholar
  8. Falbel TG, Meehl JB, Staehelin JA (1996) Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol 112:821–832CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD, Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311:111–122CrossRefPubMedGoogle Scholar
  10. Gibson LC, Willows RD, Kannangara CG, von Wettstein D, Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and –D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92:1941–1944CrossRefPubMedPubMedCentralGoogle Scholar
  11. Guo YM, Gu XF, Zhang CZ, Fang XJ, Zhang SP, Xu CQ (2003) Genetic mechanism of the cucumber leaf mutant. Acta Hort Sin 30:409–412 (in Chinese) Google Scholar
  12. Hansson A, Kannangara CG, von Wettstein D, Hansson M (1999) Molecular basis for semi-dominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci USA 96:1744–1749CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hansson A, Willows RD, Roberts TH, Hansson M (2002) Three semi-dominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Natl Acad Sci USA 99:13944–13949CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huang YS, Li HM (2009) Arabidopsis CHLI2 can substitute for CHLI1. Plant Physiol 150:636–645CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PG, Hisabori T, Takamiya K, Masuda T (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282:19282–19291CrossRefPubMedGoogle Scholar
  16. Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM et al (1996) Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet 250:383–394PubMedGoogle Scholar
  17. Jensen PE, Gibson LC, Hunter CN (1999) ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of SynechocystisPCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits. Biochem J339:127–134CrossRefGoogle Scholar
  18. Jung KH, Hur J, Ryu CH, Choi Y, Chung YY et al (2003) Characterization of a rice chlorophyll deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44:463–472CrossRefPubMedGoogle Scholar
  19. Kannangara CG, Vothknecht UC, Hansson M, von Wettstein D (1997) Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Mol Gen Genet 254:85–92CrossRefPubMedGoogle Scholar
  20. Kobayashi K, Mochizuki N, Yoshimura N, Motohashi K, Hisabori T et al (2008) Functional analysis of Arabidopsis thaliana isoforms of the Mg-chelatase CHLI subunit. Photochem Photobiol Sci 7:1188–1195CrossRefPubMedGoogle Scholar
  21. Kropat J, Oster U, Rudiger W, Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA 94:14168–14172CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kropat J, Oster U, Rudiger W, Beck CF (2000) Chloroplast signaling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24:523–531CrossRefPubMedGoogle Scholar
  23. Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906CrossRefPubMedGoogle Scholar
  24. Li YH, Yang LM, Pathak M, Li DW, He XM, Weng Y (2011) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123:973–983CrossRefPubMedGoogle Scholar
  25. Li WQ, Gao B, Yang J, Chen P, Li YH (2015) Physiological characterization of a new yellow leaf mutant. Acta Agri Boreal Occident Sin 24:98–103 (in Chinese) Google Scholar
  26. Li S, Pan YP, Wen CL, Li YH, Liu XF, Zhang XL, Behera TK, Xing GM, Weng Y (2016) Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3(CsCLV3) underlying carpel number variations in cucumber. Theor Appl Genet 129:1007–1022CrossRefPubMedGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  28. Lundqvist J, Braumann I, Kurowska M, Müller AH, Hansson M (2013) Catalytic turnover triggers exchange of subunits of the magnesium chelatase AAA motor unit. J Biol Chem 288:24012–24019CrossRefPubMedPubMedCentralGoogle Scholar
  29. Luo T, Luo S, Araújo WL, Schlicke H, Rothbart M, Yu J, Fan T, Fernie AR, Grimm B, Luo M (2013) Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network. Plant Physiol Biochem 65:17–26CrossRefPubMedGoogle Scholar
  30. Markwell J, Osterman JC (1992) Occurrence of temperature-sensitive phenotypic plasticity in chlorophyll-deficient mutants of Arabidopsis thaliana. Plant Physiol 98:392–394CrossRefPubMedPubMedCentralGoogle Scholar
  31. Masuda T (2008) Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth Res 96:121–143CrossRefPubMedGoogle Scholar
  32. Miao H, Zhang SP, Wang XW, Zhang ZH, Li M et al (2011) A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182:167–176CrossRefGoogle Scholar
  33. Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ (2010) The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci 15:488–948CrossRefPubMedGoogle Scholar
  35. Nakayama M, Masuda T, Sato N, Yamagata H, Bowler C, OhtaH Shioi Y, Takamiya K (1995) Cloning, subcellular localization and expression of CHLI, a subunit of magnesium-chelatase in soybean. Biochem Biophys Res Commun 215:422–428CrossRefPubMedGoogle Scholar
  36. Pan YP, Bo KL, Cheng ZH, Weng Y (2015) The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biol 15:302CrossRefPubMedPubMedCentralGoogle Scholar
  37. Papenbrock J, Pfundel E, Mock H-P, Grimm B (2000a) Decreased and increased expression of the subunit CHLI diminishes Mg-chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants. Plant J 22:155–164CrossRefPubMedGoogle Scholar
  38. Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000b) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122:1161–1169CrossRefPubMedPubMedCentralGoogle Scholar
  39. Petersen BL, Moller MG, Jensen PE, Henningsen KW (1999) Identification of the Xan-g gene and expression of the Mg-chelatase encoding genes Xan-f, -g and -h in mutant and wild type barley (Hordeum vulgare L.). Hereditas 131:165–170CrossRefGoogle Scholar
  40. Pierce LK, Wehner TC (1990) Review of genes and linkage groups in cucumber. Hort Sci 25:605–615Google Scholar
  41. Qin DD, Dong J, Xu FC, Guo GG, Ge ST, XuQ XuYX, Li MF (2015) Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing. BMC Genom 16:838CrossRefGoogle Scholar
  42. Rissler HM, Collakova E, DellaPenna D, Whelan J, Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128:770–779CrossRefPubMedPubMedCentralGoogle Scholar
  43. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  44. Sawers RJ, Viney J, Farmer PR, Bussey RR, Olsefski G et al (2006) The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol 60:95–106CrossRefPubMedGoogle Scholar
  45. Soldatova O, Apchelimov A, Radukina N, Ezhova T, Shestakov S, Ziemann V, Hedtke B, Grimm B (2005) An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis. Mol Genet Genom 273:311–318CrossRefGoogle Scholar
  46. Stenbaek A, Jensen PE (2010) Redox regulation of chlorophyll biosynthesis. Phytochemistry 71:853–859CrossRefPubMedGoogle Scholar
  47. Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421:79–83CrossRefPubMedGoogle Scholar
  48. Sun XQ, Wang B, Xiao YH, Wan CM, Deng XJ et al (2011) Genetic analysis and fine mapping of gene ygl98 for yellow-green leaf of rice. Acta Agron Sin 37:991–997Google Scholar
  49. Suzuki JY, Bollivar DW, Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Ann Rev Genet 31:61–89CrossRefPubMedGoogle Scholar
  50. Tang YL, HuangJF Wang RC (2004) Change law of hyperspectral data in related with chlorophyll and carotenoid in rice at different developmental stages. Rice Sci 11:274–282Google Scholar
  51. Tian XQ, Ling YH, Fang LK, Du P, Sang XC, Zhao FM, Li YF, Xie R, He GH (2013) Gene cloning and functional analysis of yellow green leaf3 (ygl3) gene during the whole-plant growth stage in rice. Genes Genom 35:87–93CrossRefGoogle Scholar
  52. Vale RD (2000) AAA proteins lords of the ring. J Cell Biol 150:F13–F19CrossRefPubMedPubMedCentralGoogle Scholar
  53. Von Wettstein D, Kahn A, Nielsen OF, Gough S (1974) Genetic regulation of chlorophyll synthesis analyzed with mutants in barley. Science 184:800–802CrossRefPubMedGoogle Scholar
  54. Von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057CrossRefGoogle Scholar
  55. Walker CJ, Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327:321–333CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wang P, Gao J, Wan C, Zhang F, Xu Z, Huang X, Sun X, Deng X (2010) Divinyl chlorophyll (ide) a can be converted to monovinyl chlorophyll (ide) a by a divinyl reductase in rice. Plant Physiol 153:994–1003CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wilson-Sánchez D, Rubio-Díaz S, Muñoz-Viana R, Pérez-Pérez JM, Jover-Gil S, Ponce MR, Micol JL (2014) Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. Plant J 79:878–891CrossRefPubMedGoogle Scholar
  58. Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yang LM, Koo DH, Li YH, Zhang XJ, Luan FS, Havey MJ, Jiang JM, Weng Y (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906CrossRefPubMedGoogle Scholar
  60. Yang LM, Li DW, Li YH, Gu XF, Huang SW, Garcia-Mas J, Weng Y (2013) A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol 13:53CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhang H, Li J, Yoo H, Yoo SC, Cho SH et al (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337CrossRefPubMedGoogle Scholar
  62. Zhang H, Liu LL, Cai MH, Zhu SS, Zhao JY, Zheng TH, Xu XY, Zeng ZQ, Niu J, Jiang L, Chen SH, Wan JM (2015) A point mutation of magnesium chelatase OsCHLI gene dampens the interaction between CHLI and CHLD subunits in rice. Plant Mol Biol Rep 33:1975–1987CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  1. 1.College of Life Science, Agriculture and ForestryQiqihar UniversityQiqiharChina
  2. 2.Horticulture DepartmentUniversity of WisconsinMadisonUSA
  3. 3.Horticulture CollegeNorthwest A&F UniversityYanglingChina
  4. 4.Vegetable Crops Research UnitUSDA-ARSMadisonUSA

Personalised recommendations