Theoretical and Applied Genetics

, Volume 129, Issue 10, pp 1915–1932 | Cite as

Massive analysis of cDNA ends (MACE) reveals a co-segregating candidate gene for LpPg1 stem rust resistance in perennial ryegrass (Lolium perenne)

  • Jens Bojahr
  • Ottilia Nhengiwa
  • Nicolas Krezdorn
  • Björn Rotter
  • Bernhard Saal
  • Brigitte Ruge-Wehling
  • Christine Struck
  • Peter Winter
Original Article


Key message

Molecular markers including a potential resistance gene co-segregating with the LpPg1 stem rust resistance locus in perennial ryegrass were identified by massive analysis of cDNA ends (MACE) transcriptome profiling.


Stem rust caused by Puccinia graminis subsp. graminicola is a severe fungal disease in the forage crop perennial ryegrass and other grasses. The previously identified LpPg1 locus confers efficient resistance against the pathogen. The aim of this study was to identify candidate genes involved in rust resistance and to use them as a resource for the development of molecular markers for LpPg1. To identify such candidates, bulked segregant analysis was combined with NGS-based massive analysis of cDNA ends (MACE) transcriptome profiling. Total RNA was isolated from bulks of infected and non-infected leaf segments from susceptible and resistant genotypes of a full-sibling mapping population and their respective parental lines and MACE was performed. Bioinformatic analysis detected 330 resistance-specific SNPs in 178 transcripts and 341 transcripts that were exclusively expressed in the resistant bulk. The sequences of many of these transcripts were homologous to genes in distinct regions of chromosomes one and four of the model grass Brachypodium distachyon. Of these, 30 were genetically mapped to a 50.8 cM spanning region surrounding the LpPg1 locus. One candidate NBS-LRR gene co-segregated with the resistance locus. Quantitative analysis of gene expression suggests that LpPg1 mediates an efficient resistance mechanism characterized by early recognition of the pathogen, fast defense signaling and rapid induction of antifungal proteins. We demonstrate here that MACE is a cost-efficient, fast and reliable tool that detects polymorphisms for genetic mapping of candidate resistance genes and simultaneously reveals deep insight into the molecular and genetic base of resistance.


Stem Rust Perennial Ryegrass Resistant Bulk Brachypodium Stem Rust Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The project was supported by funds of the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support program (FKZ 511-06.01-28-1-45.010-10).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animal performed by any of the authors.

Supplementary material

122_2016_2749_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
122_2016_2749_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 kb)


  1. Abberton MT, Marshall AH, Humphreys MW, Macduff JH, Collins RP, Marley CL (2008) Genetic improvement of forage species to reduce the environmental impact of temperate livestock grazing systems. Adv Agron 98:311–355CrossRefGoogle Scholar
  2. Beckmann K (2010) Entwicklung eines In-vitro-Resistenztests für den Erreger des Schwarzrostes (Puccinia graminis ssp. graminicola) an Deutschem Weidelgras (Lolium perenne L.) und molekulare Charakterisierung eines dominanten Resistenzgens. Julius Kühn-lnstitut, Federal Research Centre for Cultivated PlantsGoogle Scholar
  3. Beckmann K, Eickmeyer F, Lellbach H, Schubiger FX, Hartmann S, Wehling P (2010) Development of molecular markers for stem rust resistance in perennial ryegrass (Lolium perenne L.) and their utilisation in breeding programms. In: 60.Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs 2009. Lehr und Forschungszentrum für Landwirtschaft Raumberg-Gumpenstein, Irdning, pp 101–104Google Scholar
  4. Bolton MD, Kolmer JA, Xu WW, Garvin DF (2008) Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. Mol Plant Microbe Interact 21:1515–1527. doi: 10.1094/MPMI-21-12-1515 CrossRefPubMedGoogle Scholar
  5. Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 95:15849–15854CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bozkurt TO, Mcgrann GRD, Maccormack R, Boyd LA, Akkaya MS (2010) Cellular and transcriptional responses of wheat during compatible and incompatible race-specific interactions with Puccinia striiformis f. sp. tritici. Mol Plant Pathol 11:625–640. doi: 10.1111/j.1364-3703.2010.00633.x PubMedGoogle Scholar
  7. Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S, Panitz F, Bendixen C, Hedegaard J, Caccamo M, Asp T (2015) A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J. doi: 10.1111/tpj.13037 PubMedGoogle Scholar
  8. Caruso C, Caporale C, Chilosi G, Vacca F, Bertini L, Magro P, Poerio E, Buonocore V (1996) Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. J Protein Chem 15:35–44. doi: 10.1007/BF01886809 CrossRefPubMedGoogle Scholar
  9. Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716. doi: 10.1104/pp.001057 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chibucos MC, Collmer CW, Torto-Alalibo T, Gwinn-Giglio M, Lindeberg M, Li D, Tyler BM (2009) Programmed cell death in host-symbiont associations, viewed through the Gene Ontology. BMC Microbiol 9(Suppl 1):S5. doi: 10.1186/1471-2180-9-S1-S5 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Choi JJ, Alkharouf NW, Schneider KT, Matthews BF, Frederick RD (2008) Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases. Funct Integr Genom 8:341–359. doi: 10.1007/s10142-008-0080-0 CrossRefGoogle Scholar
  12. Coram TE, Wang M, Chen X (2008) Transcriptome analysis of the wheat—Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol 9:157–169. doi: 10.1111/J.1364-3703.2007.00453.X CrossRefPubMedGoogle Scholar
  13. Dean JD, Goodwin PH, Hsiang T (2005) Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. J Exp Bot 56:1525–1533. doi: 10.1093/jxb/eri145 CrossRefPubMedGoogle Scholar
  14. Deschamps S, Campbell MA (2009) Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed 25:553–570. doi: 10.1007/s11032-009-9357-9 CrossRefGoogle Scholar
  15. Dracatos PM, Cogan NOI, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117(2):203–219. doi: 10.1007/s00122-008-0766-7 CrossRefPubMedGoogle Scholar
  16. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258. doi: 10.1073/pnas.2435133100 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fondevilla S, Krezdorn N, Rotter B, Kahl G, Winter P (2015) In planta identification of putative pathogenicity factors from the chickpea pathogen Ascochyta rabiei by De novo transcriptome sequencing using RNA-Seq and massive analysis of cDNA ends. Front Microbiol 6:1–15. doi: 10.3389/fmicb.2015.01329 CrossRefGoogle Scholar
  18. Fu D, Tisserat NA, Xiao Y, Settle D, Muthukrishnan S, Liang GH (2005) Overexpression of rice TLPD34 enhances dollar-spot resistance in transgenic bentgrass. Plant Sci 168:671–680. doi: 10.1016/j.plantsci.2004.09.032 CrossRefGoogle Scholar
  19. Gao Q-M, Venugopal S, Navarre D, Kachroo A (2011a) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155:464–476. doi: 10.1104/pp.110.166876 CrossRefPubMedGoogle Scholar
  20. Gao Z, Chung E-H, Eitas TK, Dangl JL (2011b) Plant intracellular innate immune receptor resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) is activated at, and functions on, the plasma membrane. Proc Natl Acad Sci USA 108:7619–7624. doi: 10.1073/pnas.1104410108 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor–like Kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011. doi: 10.1016/S1097-2765(00)80265-8 CrossRefPubMedGoogle Scholar
  22. Guo B, Fedorova ND, Chen X, Wan C-H, Wang W, Nierman WC, Bhatnagar D, Yu J (2011) Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins (Basel) 3:737–753. doi: 10.3390/toxins3070737 CrossRefGoogle Scholar
  23. Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471. doi: 10.1016/j.pbi.2004.04.007 CrossRefPubMedGoogle Scholar
  24. Hahn K, Strittmatter G (1994) Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase. Eur J Biochem 226:619–626. doi: 10.1111/j.1432-1033.1994.tb20088.x CrossRefPubMedGoogle Scholar
  25. Hirata M, Cai H, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006) Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:270–279. doi: 10.1007/s00122-006-0292-4 CrossRefPubMedGoogle Scholar
  26. Hulbert SH, Bai J, Fellers JP, Pacheco MG, Bowden RL (2007) Gene expression patterns in near isogenic lines for wheat rust resistance gene lr34/yr18. Phytopathology 97:1083–1093. doi: 10.1094/PHYTO-97-9-1083 CrossRefPubMedGoogle Scholar
  27. Jing F, Jiao-Jiao X, Rin-Ming L, Yue-Qiu H, Shi-Chang X (2013) Genetic analysis and location of gene for resistance to stripe rust in wheat international differential host Strubes Dickkopf. J Genet 92:267–272CrossRefPubMedGoogle Scholar
  28. Jo Y-K, Barker R, Pfender W, Warnke S, Sim S-C, Jung G (2008) Comparative analysis of multiple disease resistance in ryegrass and cereal crops. Theor Appl Genet 117:531–543. doi: 10.1007/s00122-008-0797-0 CrossRefPubMedGoogle Scholar
  29. Kahl G, Molina C, Rotter B, Jüngling R, Frank A, Krezdorn N, Hoffmeier K, Winter P (2012) Reduced representation sequencing of plant stress transcriptomes. J Plant Biochem Biotechnol 21:119–127. doi: 10.1007/s13562-012-0129-y CrossRefGoogle Scholar
  30. Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144:336–346. doi: 10.1104/pp.106.095299 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim HS, Jung MS, Lee SM, Kim KE, Byun H, Choi MS, Park HC, Cho MJ, Chung WS (2009) An S-locus receptor-like kinase plays a role as a negative regulator in plant defense responses. Biochem Biophys Res Commun 381:424–428. doi: 10.1016/j.bbrc.2009.02.050 CrossRefPubMedGoogle Scholar
  32. Lellbach H (1994) Blattstück—Test zur Beurteilung der Resistenz gegen Kronenrost (Puccinia coronata) bei Lolium sp. In: 36. Fachtagung des DLG-Ausschusses Gräser, Klee und Zwischenfrüchte am 7. und 8. Dezember 1994, Fulda. pp 89–97Google Scholar
  33. Lin KC, Bushnell WR, Smith AG, Szabo LJ (1998) Temporal accumulation patterns of defence response gene transcripts in relation to resistant reactions in oat inoculated with Puccinia graminis. Physiol Mol Plant Pathol 52:95–114CrossRefGoogle Scholar
  34. Liu JJ, Sturrock R, Ekramoddoullah AK (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436. doi: 10.1007/s00299-010-0826-8 CrossRefPubMedGoogle Scholar
  35. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178. doi: 10.1105/tpc.007468 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Dill-Macky R, Evans CK, Kravchenko S, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488. doi: 10.1007/s00299-006-0265-8 CrossRefPubMedGoogle Scholar
  37. Mamo BE, Smith KP, Brueggeman RS, Steffenson BJ (2015) Genetic characterization of resistance to wheat stem rust race TTKSK in landrace and wild barley accessions identifies the rpg4/Rpg5 locus. Phytopathology 105:99–109. doi: 10.1094/PHYTO-12-13-0340-R CrossRefPubMedGoogle Scholar
  38. Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, Keller B, Suzuki A, Yano K, Ogihara Y (2010) Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina. DNA Res 17:211–222. doi: 10.1093/dnares/dsq009 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marrs KA (1996) The functions and regulation of glutathione s-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158. doi: 10.1146/annurev.arplant.47.1.127 CrossRefPubMedGoogle Scholar
  40. McDowell JM, Dhandaydham M, Long TA, Aarts MG, Goff S, Holub EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861–1874. doi: 10.1105/tpc.10.11.1861 CrossRefPubMedPubMedCentralGoogle Scholar
  41. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible W-R, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959. doi: 10.1104/pp.105.068544 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832CrossRefPubMedPubMedCentralGoogle Scholar
  43. Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against botrytis cinerea in Arabidopsis. PLoS One 7:1–11. doi: 10.1371/journal.pone.0035995 CrossRefGoogle Scholar
  44. Muylle H, Baert J, Van Bockstaele E, Pertijs J, Roldán-Ruiz I (2005) Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity (Edinb) 95:348–357. doi: 10.1038/sj.hdy.6800729 CrossRefGoogle Scholar
  45. Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, Lotz-Havla AS, Gersting SW, Cho SX, Lao JC, Ellisdon AM, Rotter B, Azam T, Mangan NE, Rossello FJ, Whisstock JC, Bufler P, Garlanda C, Mantovani A, Dinarello CA, Nold MF (2015) IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 16:354–365. doi: 10.1038/ni.3103 CrossRefPubMedGoogle Scholar
  46. Panthee DR, Yuan JS, Wright DL, Marois JJ, Mailhot D, Stewart CN (2007) Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage. Funct Integr Genom 7:291–301. doi: 10.1007/s10142-007-0045-8 CrossRefGoogle Scholar
  47. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pfeifer M, Martis M, Asp T, Mayer KFX, Lubberstedt T, Byrne S, Frei U, Studer B (2013) The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics. Plant Physiol 161:571–582. doi: 10.1104/pp.112.207282 CrossRefPubMedGoogle Scholar
  49. Pfender W (2009) A damage function for stem rust of perennial ryegrass seed crops. Phytopathology 99:498–505. doi: 10.1094/PHYTO-99-5-0498 CrossRefPubMedGoogle Scholar
  50. Pfender WF, Slabaugh ME (2013) Pathotype-specific QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 126:1213–1225. doi: 10.1007/s00122-013-2048-2 CrossRefPubMedGoogle Scholar
  51. Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480. doi: 10.1007/s00122-011-1546-3 CrossRefPubMedGoogle Scholar
  52. Pré M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357. doi: 10.1104/pp.108.117523 CrossRefPubMedPubMedCentralGoogle Scholar
  53. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Google Scholar
  54. Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127:317–324. doi: 10.1007/s00122-013-2220-8 CrossRefPubMedGoogle Scholar
  55. Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S (2007) Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust. Plant Physiol 144:347–366. doi: 10.1104/pp.106.094987 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schubiger FX, Baert J, Bayle B, Bourdon P, Cagas B, Cernoch V, Czembor E, Eickmeyer F, Feuerstein U, Hartmann S, Jakesova H, Johnston D, Krautzer B, Leenheer H, Lellbach H, Persson C, Pietraszek W, Posselt UK, Romani M, Russi L, Schulze S, Tardin MC, VanHee F, van Kruijssen L, Wilkins P, Willner E, Wolters L, Boller B (2010) Susceptibility of European cultivars of Italian and perennial ryegrass to crown and stem rust. Euphytica 176:167–181. doi: 10.1007/s10681-010-0200-5 CrossRefGoogle Scholar
  57. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133. doi: 10.1073/pnas.1533501100 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Soria-Guerra RE, Rosales-Mendoza S, Chang S, Haudenshield JS, Padmanaban A, Rodriguez-Zas S, Hartman GL, Ghabrial SA, Korban SS (2010) Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. Theor Appl Genet 120:1315–1333. doi: 10.1007/s00122-009-1258-0 CrossRefPubMedGoogle Scholar
  59. Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356. doi: 10.1046/j.1439-0523.2001.00615.x CrossRefGoogle Scholar
  60. Studer B, Byrne S, Nielsen RO, Panitz F, Bendixen C, Islam MS, Pfeifer M, Lübberstedt T, Asp T (2012) A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genom 13:140. doi: 10.1186/1471-2164-13-140 CrossRefGoogle Scholar
  61. Svensson B, Svendsen I, Højrup P, Roepstorff P, Ludvigsen S, Poulsen FM (1992) Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry 31:8767–8770CrossRefPubMedGoogle Scholar
  62. Takahashi S, Yeo Y-S, Zhao Y, O’Maille PE, Greenhagen BT, Noel JP, Coates RM, Chappell J (2007) Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. J Biol Chem 282:31744–31754. doi: 10.1074/jbc.M703378200 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61:437–455. doi: 10.1007/s00018-003-3231-4 CrossRefPubMedGoogle Scholar
  64. Torto-Alalibo T, Collmer CW, Gwinn-Giglio M (2009) The plant-associated microbe gene ontology (PAMGO) consortium: community development of new gene ontology terms describing biological processes involved in microbe-host interactions. BMC Microbiol 9(Suppl 1):S1. doi: 10.1186/1471-2180-9-S1-S1 CrossRefPubMedPubMedCentralGoogle Scholar
  65. van der Vossen E, Sikkema A, Hekkert BTL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882. doi: 10.1046/j.1365-313X.2003.01934.x CrossRefPubMedGoogle Scholar
  66. Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populationsGoogle Scholar
  67. Vargas WA, Martín JMS, Rech GE, Rivera LP, Benito EP, Díaz-Mínguez JM, Thon MR, Sukno SA (2012) Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotrichum graminicola in maize. Plant Physiol 158:1342–1358. doi: 10.1104/pp.111.190397 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Voorrips RE (1994) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi: 10.1093/jhered/93.1.77 CrossRefGoogle Scholar
  69. Wang L (2011) Biological functions of Arabidopsis TGA1 and TGA4 transcription factors. Ph. D. thesis, University of Saskatchewan, Seskatchewan, Canada.
  70. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. doi: 10.1093/bioinformatics/btp612 CrossRefPubMedGoogle Scholar
  71. Wang X-M, Gaudet DA, Liu W, Frick M, Puchalski B, Lu Z-X, Leggett F, Kang Z-S, Laroche A (2014a) Defence responses including hypersensitive cell death, oxidative burst and defence gene expression in “Moro” wheat inoculated with Puccinia striiformis. Can J Plant Pathol 36:202–215. doi: 10.1080/07060661.2014.920919 CrossRefGoogle Scholar
  72. Wang Y, Kwon SJ, Wu J, Choi J, Lee Y, Agrawal GK, Tamogami S, Rakwal R, Park S, Kim B-G, Jung K, Kang KY, Kim SG, Kim ST (2014b) Transcriptome analysis of early responsive genes in rice during Magnaporthe oryzae infection. Plant Pathol J 30:343–354. doi: 10.5423/PPJ.OA.06.2014.0055 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M, Nelson RJ, Balint-Kurti PJ (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci USA 108:7339–7344. doi: 10.1073/pnas.1011739108 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi: 10.1186/1471-2105-13-134 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zawada AM, Rogacev KS, Müller S, Rotter B, Winter P, Fliser D, Heine GH (2014) Massive analysis of cDNA Ends (MACE) and miRNA expression profiling identifies proatherogenic pathways in chronic kidney disease. Epigenetics 9:161–172. doi: 10.4161/epi.26931 CrossRefPubMedGoogle Scholar
  76. Zhang H, Hu Y, Wang C, Ji W (2011) Gene expression in wheat induced by inoculation with Puccinia striiformis West. Plant Mol Biol Rep 29:458–465. doi: 10.1007/s11105-010-0245-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jens Bojahr
    • 1
  • Ottilia Nhengiwa
    • 3
  • Nicolas Krezdorn
    • 2
  • Björn Rotter
    • 2
  • Bernhard Saal
    • 3
  • Brigitte Ruge-Wehling
    • 4
  • Christine Struck
    • 1
  • Peter Winter
    • 2
  1. 1.Group Crop Health, Faculty of Agricultural and Environmental SciencesUniversity of RostockRostockGermany
  2. 2.GenXPro GmbHFrankfurt am MainGermany
  3. 3.Saatzucht Steinach GmbH & Co KGSteinachGermany
  4. 4.Federal Research Centre for Cultivated PlantsInstitute for Breeding Research on Agricultural CropsSanitzGermany

Personalised recommendations