Theoretical and Applied Genetics

, Volume 129, Issue 10, pp 1901–1913 | Cite as

Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale

  • Jose J. Marulanda
  • Xuefei Mi
  • Albrecht E. Melchinger
  • Jian-Long Xu
  • T. Würschum
  • C. Friedrich H. LonginEmail author
Original Article


Key message

A breeding strategy with moderate nursery selection followed by genomic selection and one-stage phenotypic selection maximizes annual selection gain for grain yield across a wide range of hybrid breeding scenarios.


Genomic selection (GS) is a promising method for the selection of quantitatively inherited traits but its most effective implementation in routine hybrid breeding schemes requires further research. We compared five breeding strategies and varied their available budget, the costs for doubled haploid (DH) line and hybrid seed production as well as variance components for grain yield in a wide range. In contrast to previous studies, we included a nursery selection for disease resistance just before GS on grain yield. The breeding strategy GSrapid with moderate nursery selection followed by one stage GS and one final stage with phenotypic selection on grain yield had the highest annual selection gain across all strategies, budgets, costs and variance components considered and we, therefore, highly recommend its use in hybrid breeding of cereals. Although selecting on traits not correlated with grain yield in the observation nursery, this selection reduced the selection gain of grain yield, especially in the breeding schemes with GS and for selected fractions smaller than 0.3. Owing to the very high number of test candidates entering breeding strategies with GS, the costs for DH line production had a larger impact on the annual selection gain than the hybrid seed production costs. The optimum allocation of test resources maximizing annual selection gain in classical two-stage phenotypic selection on grain yield and for the recommended breeding strategy GSrapid is finally explored for maize, wheat, rye, barley, rice and triticale.


Doubled Haploid Cytoplasmic Male Sterility Genomic Selection Doubled Haploid Line General Combine Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was conducted with the financial support provided by the German Academic Exchange Service (DAAD) to J. J. Marulanda in the frame of the program “PhD Scholarships for international students”. Model calculations for rice in this paper were supported by National High Technology Research and Development Program of China (863 Program: 2014AA10A601) and Shenzhen Peacock Plan. The authors thank Prof. T. Miedaner and Dr. H. P. Maurer to provide valuable information about costs and budget estimates for rye and triticale. We thank two anonymous reviewers for their useful and constructive comments on the manuscript.

Compliance with ethical standards

Ethical standard

The authors declare that the experiments comply with the current laws of Germany.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Albrecht T, Auinger H-J, Wimmer V et al (2014) Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years. Theor Appl Genet 127:1375–1386. doi: 10.1007/s00122-014-2305-z CrossRefPubMedGoogle Scholar
  2. Bassi FM, Bentley AR, Charmet G et al (2015) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36. doi: 10.1016/j.plantsci.2015.08.021 CrossRefPubMedGoogle Scholar
  3. Becker H (2011) Pflanzenzüchtung (in German). Eugen Ulmer, StuttgartGoogle Scholar
  4. Bernal-Vasquez A-M, Möhring J, Schmidt M et al (2014) The importance of phenotypic data analysis for genomic prediction—a case study comparing different spatial models in rye. BMC Genom 15:646. doi: 10.1186/1471-2164-15-646 CrossRefGoogle Scholar
  5. Bernal-Vazquez A, Gordillo GA, Schmidt M, Piepho H-P (2015) Genomic selection in a hybrid rye breeding program using historical data: An approach considering genotype by year interaction. In: Poster presented at the XVIth meeting of the EUCARPIA section biometrics in plant breeding. WageningenGoogle Scholar
  6. Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090. doi: 10.2135/cropsci2006.11.0690 CrossRefGoogle Scholar
  7. Boeven PHG, Würschum T, Weissmann S et al (2016) Prediction of hybrid performance for Fusarium head blight resistance in triticale (×Triticosecale Wittmack). Euphytica 207:475–490. doi: 10.1007/s10681-015-1498-9 CrossRefGoogle Scholar
  8. Chaikam V, Martinez L, Melchinger A et al (2016) Development and validation of red root marker-based haploid inducers that effectively complement R1-nj (navajo) marker-based in vivo haploid identification in maize. Crop Sci. doi: 10.2135/cropsci2015.10.0653 Google Scholar
  9. Cochran WG (1951) Improvement by means of selection. In: Proceedings of the second Berkeley symposium on mathematical statistics and probability. University of California, pp 449–470Google Scholar
  10. Cooper M, Messina CD, Podlich D et al (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311–336. doi: 10.1071/CP14007 CrossRefGoogle Scholar
  11. Geiger HH, Miedaner T (2009) Rye breeding. In: Carena MJ (ed) Cereals. Springer, Berlin, pp 157–181CrossRefGoogle Scholar
  12. Gordillo GA, Geiger HH (2008) Alternative recurrent selection strategies using doubled haploid lines in hybrid maize breeding. Crop Sci 48:911–922. doi: 10.2135/cropsci2007.04.0223 CrossRefGoogle Scholar
  13. He S, Schulthess AW, Mirdita V et al (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129:641–651. doi: 10.1007/s00122-015-2655-1 CrossRefPubMedGoogle Scholar
  14. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12. doi: 10.2135/cropsci2008.08.0512 CrossRefGoogle Scholar
  15. Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690. doi: 10.2135/cropsci2009.11.0662 CrossRefGoogle Scholar
  16. Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of Models. Crop Sci 52:146–160. doi: 10.2135/cropsci2011.06.0297 CrossRefGoogle Scholar
  17. Heslot N, Jannink J-L, Sorrells ME (2015) Perspectives for genomic selection applications and research in plants. Crop Sci 55:1–12. doi: 10.2135/cropsci2014.03.0249 CrossRefGoogle Scholar
  18. Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177. doi: 10.1093/bfgp/elq001 CrossRefGoogle Scholar
  19. Jonas E, de Koning D-J (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31:497–504. doi: 10.1016/j.tibtech.2013.06.003 CrossRefPubMedGoogle Scholar
  20. Knapp SJ (1998) Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Sci 38:1164–1174. doi: 10.2135/cropsci1998.0011183X003800050009x CrossRefGoogle Scholar
  21. Krchov L-M, Bernardo R (2015) Relative efficiency of genomewide selection for testcross performance of doubled haploid lines in a maize breeding program. Crop Sci 55:2091–2099. doi: 10.2135/cropsci2015.01.0064 CrossRefGoogle Scholar
  22. Lehermeier C, Kramer N, Bauer E et al (2014) Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction. Genetics 198:3–16. doi: 10.1534/genetics.114.161943 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Longin CFH, Utz HF, Reif JC et al (2006) Hybrid maize breeding with doubled haploids: I. One-stage versus two-stage selection for testcross performance. Theor Appl Genet 112:903–912. doi: 10.1007/s00122-005-0192-z CrossRefPubMedGoogle Scholar
  24. Longin CFH, Utz HF, Melchinger AE, Reif JC (2007) Hybrid maize breeding with doubled haploids: II. Optimum type and number of testers in two-stage selection for general combining ability. Theor Appl Genet 114:393–402. doi: 10.1007/s00122-006-0422-z CrossRefPubMedGoogle Scholar
  25. Longin CFH, Mühleisen J, Maurer HP et al (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125:1087–1096. doi: 10.1007/s00122-012-1967-7 CrossRefPubMedGoogle Scholar
  26. Longin CFH, Gowda M, Mühleisen J et al (2013) Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theor Appl Genet 126:2791–2801. doi: 10.1007/s00122-013-2172-z CrossRefPubMedGoogle Scholar
  27. Longin CFH, Mi X, Melchinger AE et al (2014a) Optimum allocation of test resources and comparison of breeding strategies for hybrid wheat. Theor Appl Genet 127:2117–2126. doi: 10.1007/s00122-014-2365-0 CrossRefPubMedGoogle Scholar
  28. Longin CFH, Reif JC, Würschum T (2014b) Long-term perspective of hybrid versus line breeding in wheat based on quantitative genetic theory. Theor Appl Genet 127:1635–1641. doi: 10.1007/s00122-014-2325-8 CrossRefPubMedGoogle Scholar
  29. Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306. doi: 10.1007/s00122-015-2505-1 CrossRefPubMedGoogle Scholar
  30. Lorenz AJ (2013) Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3(3):481–491. doi: 10.1534/g3.112.004911 Google Scholar
  31. Melchinger AE, Longin CFH, Utz HF, Reif JC (2005) Hybrid maize breeding with doubled haploid lines: quantitative genetic and selection theory for optimum allocation of resources. In: Proceedings of the 41st annual Illinois corn breeders school. Urbana-Champaign, pp 8–21Google Scholar
  32. Melchinger AE, Schipprack W, Utz HF, Mirdita V (2014) In vivo haploid induction in maize: identification of haploid seeds by their oil content. Crop Sci 54:1497–1504. doi: 10.2135/cropsci2013.12.0851 CrossRefGoogle Scholar
  33. Melchinger AE, Correa Brauner P, Böhm J, Schipprack W (2016a) In vivo haploid induction in maize: comparison of different testing regimes for measuring haploid induction rates. Crop Sci. doi: 10.2135/cropsci2015.11.0668 Google Scholar
  34. Melchinger AE, Molenaar WS, Mirdita V, Schipprack W (2016b) Colchicine alternatives for chromosome doubling in maize haploids for doubled-haploid production. Crop Sci 56:1–11. doi: 10.2135/cropsci2015.06.0383 CrossRefGoogle Scholar
  35. Meng L, Zhao X, Ponce K et al (2016) QTL mapping for agronomic traits using multi-parent advanced generation inter-cross (MAGIC) populations derived from diverse elite indica rice lines. F Crop Res 189:19–42. doi: 10.1016/j.fcr.2016.02.004 CrossRefGoogle Scholar
  36. Mi X, Utz HF, Technow F, Melchinger AE (2014) Optimizing resource allocation for multistage selection in plant breeding with R package selectiongain. Crop Sci 54:1413–1418. doi: 10.2135/cropsci2013.10.0699 CrossRefGoogle Scholar
  37. Mi X, Utz HF, Melchinger AE (2015) Selectiongain: an R package for optimizing multi-stage selection. Comput Stat. doi: 10.1007/s00180-015-0583-9 Google Scholar
  38. Michel S, Ametz C, Gungor H et al (2016) Genomic selection across multiple breeding cycles in applied bread wheat breeding. Theor Appl Genet. doi: 10.1007/s00122-016-2694-2 PubMedPubMedCentralGoogle Scholar
  39. Mühleisen J, Maurer HP, Stiewe G et al (2013) Hybrid breeding in barley. Crop Sci 53:819–824. doi: 10.2135/cropsci2012.07.0411 CrossRefGoogle Scholar
  40. Mühleisen J, Piepho H-P, Maurer HP, Reif JC (2015) Yield performance and stability of CMS-based triticale hybrids. Theor Appl Genet 128:291–301. doi: 10.1007/s00122-014-2429-1 CrossRefPubMedGoogle Scholar
  41. Oettler G, Tams SH, Utz HF et al (2005) Prospects for hybrid breeding in winter triticale: I. Heterosis and combining ability for agronomic traits in European elite germplasm. Crop Sci 45(4):1476–1482. doi: 10.2135/cropsci2004.0462 CrossRefGoogle Scholar
  42. Riedelsheimer C, Melchinger AE (2013) Optimizing the allocation of resources for genomic selection in one breeding cycle. Theor Appl Genet 126:2835–2848. doi: 10.1007/s00122-013-2175-9 CrossRefPubMedGoogle Scholar
  43. Robson DS, Powers L, Urquhart NS (1967) The proportion of genetic deviates in the tails of a normal population. Theor Appl Genet 37:205–216. doi: 10.1007/BF00329530 CrossRefGoogle Scholar
  44. R Development Core Team (2016) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Accessed March 2016
  45. Technow F, Schrag TA, Schipprack W et al (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343–1355. doi: 10.1534/genetics.114.165860 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tenhola-Roininen T, Immonen S, Tanhuanpää P (2006) Rye doubled haploids as a research and breeding tool—a practical point of view. Plant Breed 125:584–590. doi: 10.1111/j.1439-0523.2006.01296.x CrossRefGoogle Scholar
  47. Tomerius A-M (2001) Optimizing the development of seed-parent lines in hybrid rye breeding. Dissertation. University of HohenheimGoogle Scholar
  48. Tribout T, Larzul C, Phocas F (2013) Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme. Genet Sel Evol 45:40. doi: 10.1186/1297-9686-45-40 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Utz HF (1969) Mehrstufenselektion in der Pflanzenzüchtung (In German). Eugen Ulmer, StuttgartGoogle Scholar
  50. Verstegen H, Köneke O, Korzun V, von Broock R (2014) The world importance of Barley and challenges to further improvements. In: Kumlehn J, Stein N (eds) Biotechnological approaches to Barley improvement. Springer, Berlin, pp 3–19Google Scholar
  51. Virmani SS, Sun ZX, Mou TM et al (2003) Two-line hybrid rice breeding manual. International Rice Research Institute, Los BañosGoogle Scholar
  52. Windhausen VS, Atlin GN, Hickey JM et al (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3(2):1427–1436. doi: 10.1534/g3.112.003699 Google Scholar
  53. Würschum T, Tucker MR, Reif JC, Maurer HP (2012) Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol 12:109. doi: 10.1186/1471-2229-12-109 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Würschum T, Tucker MR, Maurer HP, Leiser WL (2015) Ethylene inhibitors improve efficiency of microspore embryogenesis in hexaploid triticale. Plant Cell Tissue Organ Cult 122:751–757. doi: 10.1007/s11240-015-0808-1 CrossRefGoogle Scholar
  55. Xu S, Zhu D, Zhang Q (2014) Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc Natl Acad Sci 111:12456–12461. doi: 10.1073/pnas.1413750111 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhang X, Pérez-Rodríguez P, Semagn K et al (2015) Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity 114:291–299. doi: 10.1038/hdy.2014.99 CrossRefPubMedGoogle Scholar
  57. Zhao Y, Zeng J, Fernando R, Reif JC (2013) Genomic prediction of hybrid wheat performance. Crop Sci 53:802–810. doi: 10.2135/cropsci2012.08.0463 CrossRefGoogle Scholar
  58. Zhao Y, Mette MF, Reif JC (2015) Genomic selection in hybrid breeding. Plant Breed 134:1–10. doi: 10.1111/pbr.12231 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
  2. 2.State Plant Breeding InstituteUniversity of HohenheimStuttgartGermany
  3. 3.Agricultural Genomics InstituteChinese Academy of Agricultural SciencesShenzhenChina

Personalised recommendations