Skip to main content
Log in

QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Host resistance in WI7120 cucumber to prevailing downy mildew pathogen field populations is conferred by two major-effect, one moderate-effect and two minor-effect QTL.

Abstract

Downy mildew (DM) caused by the obligate oomycete Pseudoperonospora cubensis is the most devastating fungal disease of cucumber worldwide. The molecular mechanism of DM resistance in cucumber is poorly understood, and use of marker-assisted breeding for DM resistance is not widely available. Here, we reported QTL mapping results for DM resistance with 243 F2:3 families from the cross between DM-resistant inbred line WI7120 (PI 330628) and susceptible ‘9930’. A linkage map was developed with 348 SSR and SNP markers. Phenotyping of DM inoculation responses were conducted in four field trails in 2 years at three locations. Four QTL, dm2.1, dm4.1, dm5.1, and dm6.1 were consistently and reliably detected across at least three of the four environments which together could explain 62–76 % phenotypic variations (R 2). Among them, dm4.1 and dm5.1 were major-effect QTL (R 2 = 15–30 %) with only additive effects; dm2.1 (R 2 = 5–15 %) and dm6.1 (R 2 = 4–8 %) had moderate and minor effects, respectively. Epistatic effects were detected for dm2.1 and dm6.1 with both dm4.1 and dm5.1. One additional minor-effect QTL, dm6.2 (R 2 = 3–5 %) was only detectable with the chlorosis rating criterion. All alleles contributing to DM resistance were from WI7120. This study revealed two novel QTL for DM resistance and the unique genetic architecture of DM resistance in WI7120 conferring high level resistance to prevailing DM populations in multiple countries. The effects of disease rating scales, rating time and criteria, population size in phenotyping DM resistance on the power of QTL detection, and the use of DM resistance in WI7120 in cucumber breeding were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angelov D (1982) Relation of various samples of cucumbers to the mildew disease, Pseudoperonospora cubensis (Berk. & Curt.) Rostow; in Rep 2nd. Natl Symp Plant Immun (Plovdiv) 3:99–105

    Google Scholar 

  • Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Z, Yuan X, Cai R, Liu L, He H, Zhou H, Pan J (2008) QTL analysis of downy mildew resistance in cucumber. Prog Nat Sci 18:706–710 (in Chinese)

    CAS  Google Scholar 

  • Barnes WC (1948) The performance of Palmetto, a new downy mildew-resistant cucumber variety. Proc Amer Soc Hort Sci 51:437–444

    Google Scholar 

  • Barnes WC, Epps WM (1954) An unreported type of resistance to cucumber downy mildew. Plant Dis Report 38:409–415

    Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Call AD, Criswell AD, Wehner TC et al (2012a) Resistance of cucumber cultivars to a new strain of cucurbit downy mildew. HortSci 47:171–178

    Google Scholar 

  • Call AD, Criswell AD, Wehner TC et al (2012b) Screening cucumber for resistance to downy mildew caused by Pseudoperonospora cubensis (Berk. and Curt.) Rostov. Crop Sci 52:577–592

    CAS  Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, Kodira CD, Huang SW, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11:569

    Article  Google Scholar 

  • Chen T, Cohen Y (2013) Isolate-dependent inheritance of resistance to downy mildew in cucumber (Abstracts of Presentations at the 34th Congress of the Israeli Phytopathological Society). Phytoparasitica 41:462

    Article  Google Scholar 

  • Cohen Y, Rotem J (1971) Rate of lesion development in relation to sporulating potential of Pseudoperonospora cubensis in cucumbers. Phytopathol 61:265–268

    Article  Google Scholar 

  • Cohen Y, Rubin AE, Galperin M, Ploch S, Runge F, Thines M (2014) Seed transmission of Pseudoperonospora cubensis. PLoS One 9:e109766

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen Y, Van den Langenberg KM, Wehner TC, Ojiambo PS, Hausbeck M, Quesada-Ocampo LM, Lebeda A, Sierotzki H, Gisi U (2015) Resurgence of Pseudoperonospora cubensis: the causal agent of cucurbit downy mildew. Phytopathol 105:998–1012

    Article  Google Scholar 

  • Criswell AD, Wehner TC, Klosinska U, Kozik E (2008) Use of sporulation and other leaf and vine traits for evaluation of resistance to downy mildew in cucumber. In: Pitrat M (ed) Proc Cucurbitaceae. INRA, Avignon, May 21–24th, 2008

  • Ding G, Qin Z, Zhou X, Fan J (2007) RAPD and SCAR markers linked to downy mildew resistance genes in cucumber. Acta Botanica Boreali-Occidentalia Sinica 27:1747–1751 (in Chinese)

    CAS  Google Scholar 

  • Epps WM, Barnes WC (1952) The increased susceptibility of the palmetto cucumber to downy mildew in South Carolina. Plant Dis Rept 36:14–15

    Google Scholar 

  • Fanourakis NE, Simon PW (1987) Analysis of genetic linkage in the cucumber. J Hered 78:238–242

    Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml user guide release 3.0

  • Hartung K, Piepho HP (2007) Are ordinal rating scales better than percent ratings? a statistical and “psychological” view. Euphytica 155:15–26

    Article  Google Scholar 

  • He X, Li YH, Pandey S, Yandell BS, Pathak M, Weng Y (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 126:2149–2161

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth WL, Summers CF, Glos M et al (2014) Development of downy mildew-resistant cucumbers for late-season production in the northeastern United States. HortSci 49:10–17

    Google Scholar 

  • Holmes GJ, Main CE, Zeever ZT (2004) Cucurbit downy mildew: a unique pathosystem for disease forecasting. In: Spencer-Phillips PTN, Jeger M (eds) Advances in Downy Mildew Research. Kluwer Academic Publishers, Dordercht, pp 69–80

    Chapter  Google Scholar 

  • Holmes GJ, Wehner TC, Thornton A (2006) An old enemy re-emerges. American Vegetable Grower, pp 14–15

  • Horejsi T, Staub JE, Thomas C (2000) Linkage of random amplified polymorphic DNA markers to downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 115:105–113

    Article  CAS  Google Scholar 

  • Innark P, Ratanachan T, Khanobdee C, Samipak S, Jantasuriyarat C (2014) Downy mildew resistant/susceptible cucumber germplasm (Cucumis sativus L.) genetic diversity assessment using ISSR markers. Crop Prot 60:56–61

    Article  CAS  Google Scholar 

  • Jenkins SF Jr (1942) Downy mildew resistances in cucumber. J Hered 33:35–39

    Google Scholar 

  • Jenkins SF Jr (1946) Studies on the inheritance of downy mildew resistance and of other characters in cucumbers. J Hered 37:261–271

    Google Scholar 

  • Kennard WC, Poetter K, Dijkhuizen A, Meglic V, Staub JE, Havey MJ (1994) Linkages among RFLP, RAPD, isozyme, disease-resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet 89:42–48

    CAS  Google Scholar 

  • Kozik EU, Klosińska U, Call AD, Wehner TC (2013) Heritability and genetic variance estimates for resistance to downy mildew in cucumber accession Ames 2354. Crop Sci 53:177–182

    Article  Google Scholar 

  • Lebeda A (1999) Pseudoperonospora cubensis on Cucumis and Cucurbita spp: resistance breeding aspects. Proc 1st Intl Symp Cucurbits Acta Hort 492:363–370

    Google Scholar 

  • Lebeda A, Urban J (2007) Temporal changes in pathogenicity and fungicide resistance in Pseudoperonospora cubensis populations. Acta Hortic 731:327–336

    Article  CAS  Google Scholar 

  • Lebeda A, Pavelkova J, Sedlakova B, Urban J (2013) Structure and temporal shifts in virulence of Pseudoperonospora cubensis populations in the Czech Republic. Plant Pathol 62:336–345

    Article  Google Scholar 

  • Li Z, Zhang Z, Yan P, Huang S, Fei Z, Lin K (2011) RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genom 12:540

    Article  CAS  Google Scholar 

  • Li Y, Wen C, Weng Y (2013) Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor Appl Genet 126:2187–2196

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Zhang S, Wang X et al (2011) A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182:167–176

    Article  Google Scholar 

  • Oerke E, Steiner U, Dehne H, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132

    Article  CAS  PubMed  Google Scholar 

  • Ojiambo PS, Gent DH, Quesada-Ocampo LM et al (2015) Epidemiology and population biology of Pseudoperonospora cubensis : a model system for management of downy mildews. Annu Rev Phytopathol 53:223–246

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Zhou X, Wan H, Chen J (2013) QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol 161:536–543

    Article  Google Scholar 

  • Petrov L, Boogert K, Sheck L, Baider A, Rubin E, Cohen Y (2000) Resistance to downy mildew, Pseudoperonospora cubensis, in cucumbers. Acta Hort (ISHS) 510:203–210

    Article  Google Scholar 

  • Poland J, Nelson RJ (2011) In the eye of the beholder: the effect of rater variability and different rating scales on QTL mapping. Phytopathology 101:290–298

    Article  PubMed  Google Scholar 

  • Postman J, Volk G, Aldwinckle H (2010) Standardized plant disease evaluations will enhance resistance gene discovery. HortSci 45:1317–1320

    Google Scholar 

  • Quesada-Ocampo LM, Granke LL, Olsen J, Gutting HC, Runge F, Thines M, Lebeda A, Hausbeck MK (2012) The genetic structure of Pseudoperonospora cubensis populations. Plant Dis 96:1459–1470

    Article  CAS  Google Scholar 

  • Ren Y, Zhang Z, Liu J et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4:e5795

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubinstein M, Katzenellenbogen M, Eshed R, Rozen A, Katzir N, Colle M, Yang L, Grumet R, Weng Y, Sherman A, Ophir R (2015) Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One 10:e0124101

    Article  PubMed  PubMed Central  Google Scholar 

  • Savory EA, Granke LL, Quesada-Ocampo LM, Varbanova M, Hausbeck MK, Day B (2011) The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol Plant Pathol 12:217–226

    Article  PubMed  Google Scholar 

  • Szczechura W, Staniaszek M, Klosinska U, Kozik EU (2015) Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk. et Curt.) Rostov. in cucumber. Russian J Genet 51:974–979

    Article  CAS  Google Scholar 

  • van Vliet GJA, Meysing W (1974) Inheritance of resistance to Pseudoperonospora Cubensis Rost in cucumber (Cucumis Sativus L.). Euphytica 23:251–255

    Article  Google Scholar 

  • VandenLangenberg KM (2015) Studies on downy mildew resistance in cucumber (Cucumis sativus L.). North Carolina State University, Raleigh

    Google Scholar 

  • Wehner TC, Shetty NV (1997) Downy mildew resistance of the cucumber germplasm collection in North Carolina field tests. Crop Sci 37:1331–1340

    Article  Google Scholar 

  • Xie W, Yu K, Pauls KP, Navabi A (2012) Application of image analysis in studies of quantitative disease resistance exemplified using common bacterial blight–common bean pathosystem. Phytopathology 102:434–442

    Article  PubMed  Google Scholar 

  • Yang L, Koo DH, Li YH, Zhang XJ, Luan FS, Havey MJ, Jiang JM, Weng Y (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Li DW, Li YH, Gu XF, Huang SW, Garcia-Mas J, Weng Y (2013) A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol 13:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka Y, Sakata Y, Sugiyama M, Fukino N (2014) Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 198:265–276

    Article  CAS  Google Scholar 

  • Zhang S, Liu MM, Miao H et al (2013) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kristin Haider for technical help. We are also indebted to Vittorio Stravato, and Giuseppe Carannante for help phenotyping of DM resistance in the IT2013 experiment. This research was supported by the US Department of Agriculture (USDA)-Specialty Crop Research Initiative Grant (SCRI, project # 2011-51181-30661) to YW. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Weng.

Ethics declarations

Conflict of interest

The authors declares no conflict of interest.

Additional information

Communicated by S. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., VandenLangenberg, K., Wehner, T.C. et al. QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theor Appl Genet 129, 1493–1505 (2016). https://doi.org/10.1007/s00122-016-2719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2719-x

Keywords

Navigation