Theoretical and Applied Genetics

, Volume 129, Issue 7, pp 1373–1382

Genetic mapping of SrCad and SNP marker development for marker-assisted selection of Ug99 stem rust resistance in wheat

  • Mulualem T. Kassa
  • Frank M. You
  • Tom G. Fetch
  • Pierre Fobert
  • Andrew Sharpe
  • Curtis J. Pozniak
  • James G. Menzies
  • Mark C. Jordan
  • Gavin Humphreys
  • Tingting Zhu
  • Ming-Cheng Luo
  • Curt A. McCartney
  • Colin W. Hiebert
Original Article

Abstract

Key message

New SNP markers that can be used for marker-assisted selection and map-based cloning saturate the chromosome region carryingSrCad, a wheat gene that confers resistance to Ug99 stem rust.

Abstract

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is a devastating disease of wheat worldwide. Development of cultivars with effective resistance has been the primary means to control this disease, but the appearance of new virulent strains such as Ug99 has rendered most wheat varieties vulnerable. The stem rust resistance gene SrCad located on chromosome arm 6DS has provided excellent resistance to various strains of Ug99 in field nurseries conducted in Njoro, Kenya since 2005. Three genetic populations were used to identify SNP markers closely linked to the SrCad locus. Of 220 SNP markers evaluated, 27 were found to be located within a 2 cM region surrounding SrCad. The diagnostic potential of these SNPs was evaluated in a diverse set of 50 wheat lines that were primarily of Canadian origin with known presence or absence of SrCad. Three SNP markers tightly linked proximally to SrCad and one SNP that co-segregated with SrCad were completely predictive of the presence or absence of SrCad. These markers also differentiated SrCad from Sr42 and SrTmp which are also located in the same region of chromosome arm 6DS. These markers should be useful in marker-assisted breeding to develop new wheat varieties containing SrCad-based resistance to Ug99 stem rust.

Supplementary material

122_2016_2709_MOESM1_ESM.xlsx (15 kb)
Supplementary material 1 (XLSX 15 kb)
122_2016_2709_MOESM2_ESM.xlsx (29 kb)
Supplementary material 2 (XLSX 28 kb)

References

  1. Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086–1099CrossRefPubMedGoogle Scholar
  2. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucl Acids Res 33:W451–W454CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo MC, Dubcovsky J (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 23:23–33CrossRefGoogle Scholar
  4. Chen S, Rouse MN, Zhang W, Jin Y, Akhunov E, Wei Y, Dubcovsky J (2015) Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor Appl Genet 128:645–656CrossRefPubMedGoogle Scholar
  5. Fetch JT (2005) Races of Puccinia graminis on wheat, barley, and oat in Canada, in 2002 and 2003. Can J Plant Pathol 27:572–580CrossRefGoogle Scholar
  6. Fetch T (2007) Virulence of stem rust race TTKS on Canadian wheat cultivars. Can J Plant Pathol 29:441Google Scholar
  7. Fetch T, Zegeye T, Singh D, Wanyera R, Penner M, Rashid K (2012) Virulence of Ug99 (race TTKSK) and race TRTTF on Canadian wheat cultivars. Can J Plant Sci 92:602Google Scholar
  8. Gao L, Kielsmeier-Cook J, Bajgain P, Zhang X, Chai S, Rouse MN, Anderson JA (2015) Development of genotyping by sequencing (GBS)- and array-derived SNP markers for stem rust resistance gene Sr42. Mol Breed 35:207. doi:10.1007/s11032-015-0404-4 CrossRefGoogle Scholar
  9. Ghazvini H, Hiebert CW, Zegeye T, Liu S, Dilawari M, Tsilo T, Anderson JA, Rouse MN, Jin Y, Fetch T (2012) Inheritance of resistance to Ug99 stem rust in wheat cultivar Norin 40 and genetic mapping of Sr42. Theor Appl Genet 125:817–824CrossRefPubMedGoogle Scholar
  10. Hiebert CW, Fetch TG, Zegeye T, Thomas JB, Somers DJ, Humphreys DG, McCallum BD, Cloutier S, Singh D, Knott DR (2011) Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet 122:143–149CrossRefPubMedGoogle Scholar
  11. International Wheat Genome Sequecning Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788CrossRefGoogle Scholar
  12. Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KF, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, International Wheat Genome Sequencing C, Yang H, Liu X, He Z, Mao L, Wang J (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95CrossRefPubMedGoogle Scholar
  13. Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp.tritici. Plant Dis 92:923–926CrossRefGoogle Scholar
  14. Jin Y, Szabo LJ, Rouse MN, Fetch T, Pretorius ZA, Wanyera R, Njau P (2009) Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp.tritici. Plant Dis 93:367–370CrossRefGoogle Scholar
  15. Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Consortium I, Sharpe AG, Sidebottom CH, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal UK, Bariana HS, Hayden MJ, Pozniak C, Jeddeloh JA, Hall A, Akhunov E (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 16:48CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenic 12:172–175CrossRefGoogle Scholar
  17. Laroche A, Demeke T, Gaudet DA, Puchalski B, Frick M, McKenzie R (2000) Development of a PCR marker for rapid identification of the Bt-10 gene for common bunt resistance in wheat. Genome 43:217–223CrossRefPubMedGoogle Scholar
  18. Lopez-Vera EE, Nelson S, Singh RP, Basnet BR, Haley SD, Bhavani S, Huerta-Espino J, Xoconostle-Cazares BG, Ruiz-Medrano R, Rouse MN, Singh S (2014) Resistance to stem rust Ug99 in six bread wheat cultivars maps to chromosome 6DS. Theor Appl Genet 127:231–239CrossRefPubMedGoogle Scholar
  19. Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30:1231–1235CrossRefGoogle Scholar
  20. Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KFX, Sehgal SK, Li W, Gill BS, Bevan MW, Šimková H, Doležel J, Weining S, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci 110:7940–7945CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ma H, Kong Z, Fu B, Zhang L, Jia H, Ma Z (2011) Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet 123:1099–1106CrossRefPubMedGoogle Scholar
  22. Mago R, Cesari S, Zhang P, Bansal U, Vautrin S, Simkova H, Luo M-C, Periyannan S, Karaoglu H, Jin Y, Ayliffe M, Bariana HS, McIntosh R, Park R, Dolezel J, Berges H, Lagudah E, Ellis J, Dodds P (2015) The cereal Mla locus is a rich source of effective resistance genes: cloning the Sr50 gene from rye. Borlaug Global Rust Initiative Technical Workshop, September 17–20, 2015, Sydney, AustraliaGoogle Scholar
  23. McCallum BD, DePauw RM (2008) A review of wheat cultivars grown in the Canadian prairies. Can J Plant Sci 88:649–677CrossRefGoogle Scholar
  24. McIntosh RA, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia XC (2011) Catalogue of gene symbols for wheat: 2011 supplement. Annu Wheat Newsl 57:303–321Google Scholar
  25. Menzies JG, Knox RE, Popovic Z, Procunier JD (2006) Common bunt resistance gene Bt10 located on wheat chromosome 6D. Can J Plant Sci 86(Special Issue):1409–1412CrossRefGoogle Scholar
  26. Olson EL, Rouse MN, Pumphrey MO, Bowden RL, Gill BS, Poland JA (2013) Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. Theor Appl Genet 126:2477–2484CrossRefPubMedGoogle Scholar
  27. Pallotta MA, Warner P, Fox RL, Kuchel H, Jefferies SJ, Langridge P (2003) Marker assisted wheat breeding in the southern region of Australia. In: Pogna NE, Romano M, Pogna EA, Galerio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Instituto Sperimentale per la Cerealcoltura, Rome, pp 789–791Google Scholar
  28. Park RF (2015) Long term surveys of pathogen populations underpin sustained control of the rust diseases of wheat in Australia. J Proc R Soc N S W 148:15–27Google Scholar
  29. Patpour M, Hovmoller M, Justesen AF, Newcomb M, Olivera Firpo PD, Jin Y, Szabo LJ, Hodson D, Shahin A, Wanyera R, Habarurema I, Wobibi S (2015) Emergence of virulence to SrTmp in the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Africa. Plant Dis 99 (in press). http://dx.doi.org/10.1094/PDIS-06-15-0668-PDN
  30. Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788CrossRefPubMedGoogle Scholar
  31. Pozniak C, MacLachlan R, McCartney C, Sharpe A, Akhunov E, Hucl P (2013) Combining exome capture and bulked segregant analysis for marker discovery in durum wheat. Poster Presented at the XXI Plant and Animal Genome Conference, San Diego, CA, 12–16 January 2013Google Scholar
  32. Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis 84:203CrossRefGoogle Scholar
  33. Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of Wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM (2015) Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci 16:19248–19290CrossRefPubMedPubMedCentralGoogle Scholar
  35. Singh R (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Rev Perspect Agric Vet Sci Nutr Nat Res. doi:10.1079/pavsnnr20061054 Google Scholar
  36. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481CrossRefPubMedGoogle Scholar
  37. Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. USDA Agricultural Research Service E617Google Scholar
  38. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wilkinson PA, Winfield MO, Barker GL, Allen AM, Burridge A, Coghill JA, Edwards KJ (2012) CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinform 13:219CrossRefGoogle Scholar
  40. You FM, Huo N, Deal KR, Gu YQ, Luo MC, McGuire PE, Dvorak J, Anderson OD (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genom 12:59CrossRefGoogle Scholar
  41. Yu LX, Barbier H, Rouse MN, Singh S, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME (2014) A consensus map for Ug99 stem rust resistance loci in wheat. Theor Appl Genet 127:1561–1581CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Crown Copyright  2016

Authors and Affiliations

  • Mulualem T. Kassa
    • 1
    • 2
  • Frank M. You
    • 2
  • Tom G. Fetch
    • 3
  • Pierre Fobert
    • 1
  • Andrew Sharpe
    • 1
  • Curtis J. Pozniak
    • 4
  • James G. Menzies
    • 2
  • Mark C. Jordan
    • 2
  • Gavin Humphreys
    • 5
  • Tingting Zhu
    • 6
  • Ming-Cheng Luo
    • 6
  • Curt A. McCartney
    • 2
  • Colin W. Hiebert
    • 2
  1. 1.National Research CouncilSaskatoonCanada
  2. 2.Agriculture and Agri-Food Canada, Morden Research and Development CentreMordenCanada
  3. 3.Agriculture and Agri-Food Canada, Brandon Research and Development CentreBrandonCanada
  4. 4.Crop Development Centre, University of SaskatchewanSaskatoonCanada
  5. 5.Agriculture and Agri-Food Canada, Ottawa Research and Development CentreOttawaCanada
  6. 6.Department of Plant SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations