Theoretical and Applied Genetics

, Volume 129, Issue 3, pp 469–484 | Cite as

QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress

  • Fa Cui
  • Xiaoli Fan
  • Mei Chen
  • Na Zhang
  • Chunhua Zhao
  • Wei Zhang
  • Jie Han
  • Jun Ji
  • Xueqiang Zhao
  • Lijuan Yang
  • Zongwu Zhao
  • Yiping Tong
  • Tao Wang
  • Junming LiEmail author
Original Article


Key message

QTLs for kernel characteristics and tolerance to N stress were identified, and the functions of ten known genes with regard to these traits were specified.


Kernel size and quality characteristics in wheat (Triticum aestivum L.) ultimately determine the end use of the grain and affect its commodity price, both of which are influenced by the application of nitrogen (N) fertilizer. This study characterized quantitative trait loci (QTLs) for kernel size and quality and examined the responses of these traits to low-N stress using a recombinant inbred line population derived from Kenong 9204 × Jing 411. Phenotypic analyses were conducted in five trials that each included low- and high-N treatments. We identified 109 putative additive QTLs for 11 kernel size and quality characteristics and 49 QTLs for tolerance to N stress, 27 and 14 of which were stable across the tested environments, respectively. These QTLs were distributed across all wheat chromosomes except for chromosomes 3A, 4D, 6D, and 7B. Eleven QTL clusters that simultaneously affected kernel size- and quality-related traits were identified. At nine locations, 25 of the 49 QTLs for N deficiency tolerance coincided with the QTLs for kernel characteristics, indicating their genetic independence. The feasibility of indirect selection of a superior genotype for kernel size and quality under high-N conditions in breeding programs designed for a lower input management system are discussed. In addition, we specified the functions of Glu-A1, Glu-B1, Glu-A3, Glu-B3, TaCwi-A1, TaSus2, TaGS2-D1, PPO-D1, Rht-B1, and Ha with regard to kernel characteristics and the sensitivities of these characteristics to N stress. This study provides useful information for the genetic improvement of wheat kernel size, quality, and resistance to N stress.


Kernel Size Kernel Width Grain Protein Content Kernel Characteristic Kernel Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Grain protein content


Wet gluten content


Dough tractility


Test weight


Water absorption


Zeleny sedimentation value


Kernel hardness


Kernel length


Kernel width


Kernel diameter ratio


Thousand-kernel weight


Kernel-related trait


Differences in the value for a kernel-related trait between the high-nitrogen and low-nitrogen treatments



This research was supported by grants from the National Natural Science Foundation of China (No. 31471573), the National Basic Research Program of China (2014CB138100), the Chinese Academy of Sciences (No. XDA08030107) and the Ministry of Agriculture of China (No. CARS-03-03B).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

All of the authors have read and have abided by the statement of ethical standards for manuscripts submitted to Theoretical and Applied Genetics.

Supplementary material

122_2015_2641_MOESM1_ESM.docx (738 kb)
Supplementary material 1 (DOCX 738 kb)


  1. Alexander WL, Smith EL, Dhanasobhan C (1984) A comparison of yield and yield component selection in winter wheat. Euphytica 33:953–961. doi: 10.1007/BF00021926 CrossRefGoogle Scholar
  2. Ammiraju JSS, Dholakia BB, Santra DK, Singh H, Lagu MD, Tam-hankar SA, Dhaliwal HS, Rao VS, Gupta VS, Ranjekar PK (2001) Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102:726–732. doi: 10.1007/s001220051703 CrossRefGoogle Scholar
  3. Asif M, Yang RC, Navabi A, Iqbal M, Kamran A, Lara EP, Randhawa H, Pozniak C, Spaner D (2015) Mapping QTL, selection differentials, and the effect of Rht-B1 under organic and conventionally managed systems in the Attila × CDC Go spring wheat mapping population. Crop Sci 55:1129–1142. doi: 10.2135/cropsci2014.01.0080 CrossRefGoogle Scholar
  4. Bai C, Liang YL, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Botany 64:1745–1753. doi: 10.1093/jxb/ert041 CrossRefGoogle Scholar
  5. Bathia CR, Rabson R (1987) Relationship of grain yield and nutritional quality. In: Nutritional quality of cereal grains: genetic and agronomic improvement. Agronomy Monograph No. 28, ASA-CSSA-SSSA, Madison, pp 11–43Google Scholar
  6. Breseghello F, Finey PL, Gaines C, Andrews L, Tanaka J, Penner G, Sorrells ME (2005) Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci 45:1685–1695. doi: 10.2135/cropsci2004.0310 CrossRefGoogle Scholar
  7. Campbell KG, Finney PL, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Siritunga D, Zhu J, Gendre F, Roué C, Vérel A, Sorrells ME (2001) Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. Crop Sci 41:1275–1285. doi: 10.2135/cropsci2004.0310 CrossRefGoogle Scholar
  8. Ceccarelli S, Grando S (1991) Environment of selection and type of germplasm in barley breeding for low-yielding conditions. Euphytica 57:207–219. doi: 10.1007/BF00039667 CrossRefGoogle Scholar
  9. Cui F, Ding A, Li J, Zhao C, Li X, Feng D, Wang X, Wang L, Gao J, Wang H (2011) Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL? J Genet 90:409–425. doi: 10.1007/s12041-011-0103-9 CrossRefPubMedGoogle Scholar
  10. Cui F, Fan X, Zhao C, Zhang W, Chen M, Ji J, Li J (2014a) A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genet 15:57. doi: 10.1186/1471-2156-15-57 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Cui F, Zhao CH, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H (2014b) Construction of an integrative linkage map and QTL mapping of grain yield–related traits using three related wheat RIL populations. Theor Appl Genet 127:659–675. doi: 10.1007/s00122-013-2249-8 CrossRefPubMedGoogle Scholar
  12. Cuthbert JL, Somers DJ, Brũlé-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608. doi: 10.1007/s00122-008-0804-5 CrossRefPubMedGoogle Scholar
  13. Echeverry-Solarte M, Kumar A, Kianian S, Simsek S, Alamri MS, Mantovani EE, McClean PE, Deckard EL, Elias E, Schatz B, Xu SS, Mergoum M (2015) New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes. Theor Appl Genet 128:893–912. doi: 10.1007/s00122-015-2478-0 CrossRefPubMedGoogle Scholar
  14. Fan X, Cui F, Zhao C, Zhang W, Yang L, Zhao X, Han J, Su Q, Ji J, Zhao Z, Tong Y, Li J (2015) QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol Breeding. doi: 10.1007/s11032-015-0205-9 Google Scholar
  15. Fischer R, Stockman Y (1986) Increased kernel number in Norin 10-derived dwarf wheat: evaluation of the cause. Aust J Plant Physio 13:767–784. doi: 10.1071/PP9860767 CrossRefGoogle Scholar
  16. Gadaleta A, Nigro D, Giancaspro A, Blanco A (2011) The glutamine synthetase (GS2) genes in relation to grain protein content of durum wheat. Funct Integr Genomics 11:665–670. doi: 10.1007/s10142-011-0235-2 CrossRefPubMedGoogle Scholar
  17. Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1050. doi: 10.1105/tpc.110.074153 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Gill BS, Appels R, Botha-Oberholster A-M, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvořák J, Iwanaga M, Keller B, Li W, McCombie R, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168:1087–1096. doi: 10.1534/genetics.104.034769 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Giroux MJ, Morris CF (1997) A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864. doi: 10.1007/s001220050636 CrossRefGoogle Scholar
  20. Gooding MJ, Canon ND, Thompson AJ, Davies WP (1999) Quality and value of organic grain from contrasting bread making wheat varieties and near isogenic lines differing in dwarfing genes. Biol Agri Hortic 16:335–350. doi: 10.1080/01448765.1999.9755237 CrossRefGoogle Scholar
  21. Gooding MJ, Uppal RK, Addisu M, Harris KD, Uauy C, Simmonds JR, Murdoch AJ (2012) Reduced height alleles (Rht) and Hagberg falling number of wheat. J Cereal Sci 55:305–311. doi: 10.1016/j.jcs.2012.01.003 CrossRefGoogle Scholar
  22. Habash DZ, Bernard S, Schondelmaier J, Weyen J, Quarrie SA (2007) The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet 114:403–419. doi: 10.1007/s00122-006-0429-5 CrossRefPubMedGoogle Scholar
  23. He XY, He ZH, Zhang LP, Sun DJ, Morris CF, Fuerst EP, Xia XC (2007) Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet 115:47–58. doi: 10.1007/s00122-007-0539-8 CrossRefPubMedGoogle Scholar
  24. He XY, He ZH, Ma W, Appels R, Xia XC (2009) Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed 23:553–563. doi: 10.1007/s11032-009-9255-1 CrossRefGoogle Scholar
  25. Hill J, Becker HC, Tigerstedt PMA (1998) Quantitative and ecological aspects of plant breeding. Chapman and Hall, LondonCrossRefGoogle Scholar
  26. Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389. doi: 10.1007/s00122-002-1179-7 PubMedGoogle Scholar
  27. Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766. doi: 10.1007/s00122-006-0346-7 CrossRefPubMedGoogle Scholar
  28. Igrejas G, Leroy P, Charmet G, Gaborit T, Marion D, Branlard G (2002) Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor Appl Genet 106:19–27. doi: 10.1007/s00122-002-0971-8 PubMedGoogle Scholar
  29. Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genom 11:49–61. doi: 10.1007/s10142-010-0188-x CrossRefGoogle Scholar
  30. Johnson JM, Griffey CA, Harris CH (1999) Comparative effects of 1BL/1RS translocation in relation to protein composition and milling and baking quality of soft red winter wheat. Cereal Chem 76:467–472. doi: 10.1094/CCHEM.1999.76.4.467 CrossRefGoogle Scholar
  31. Kuchel H, Landridge P, Mosinek L, Williams K, Jefferies SP (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112:1487–1495. doi: 10.1007/s00122-006-0252-z CrossRefPubMedGoogle Scholar
  32. Kunert A, Naz AA, Dedeck O, Pillen K, Léon J (2007) AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides × T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115:683–695. doi: 10.1007/s00122-007-0600-7 CrossRefPubMedGoogle Scholar
  33. Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Hanocq E, Devienne-Barret FD, Gouis JL (2007) Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor Appl Genet 115:399–415. doi: 10.1007/s00122-007-0575-4 CrossRefPubMedGoogle Scholar
  34. Laperche A, Gouis JL, Hanocq E, Brancourt-Hulmel M (2008) Modelling nitrogen stress with probe genotypes to assess genetic parameters and genetic determinism of winter wheat tolerance to nitrogen constraint. Ephytica 161:259–271. doi: 10.1007/s10681-007-9433-3 CrossRefGoogle Scholar
  35. Lei ZS, Gale KR, He ZH, Gianibelli C, Larroque O, Xia XC, Butow BJ, Ma W (2006) Y-type gene specific markers for enhanced discrimination of high molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J Cereal Sci 43:94–101. doi: 10.1016/j.jcs.2005.08.003 CrossRefGoogle Scholar
  36. Li Y, Song Y, Zhou R, Branland Jia J (2009) Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population. Plant Breed 128:235–243. doi: 10.1007/s00122-012-1829-3 CrossRefGoogle Scholar
  37. Li X, Zhao X, He X, Zhao G, Li B, Liu D, Zhang A, Zhang X, Tong Y, Li Z (2011) Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use- and yield-related traits in bread wheat. New Phytol 189(2):449–458. doi: 10.1111/j.1469-8137.2010.03490.x CrossRefPubMedGoogle Scholar
  38. Li J, Cui F, Ding A, Zhao C, Wang X, Wang L, Bao Y, Qi X, Li X, Gao J, Feng D, Wang H (2012) QTL detection of seven quality traits in wheat using two related recombinant inbred line populations. Euphytica 183:207–226. doi: 10.1007/s10681-011-0448-4 CrossRefGoogle Scholar
  39. Liu Y, He Z, Appels R, Xia X (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10. doi: 10.1007/s00122-012-1829-3 CrossRefPubMedGoogle Scholar
  40. Ma D, Yan J, He Z, Wu L, Xia X (2012) Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed 1:43–52. doi: 10.1007/s11032-010-9524-z CrossRefGoogle Scholar
  41. Mann G, Diffey S, Cullis B, Azanza F, Martin D, Kelly A, McIntyre L, Schmidt A, Ma W, Nath Z, Kutty I, Leyne PE, Rampling L, Quail KJ, Morell MK (2009) Genetic control of wheat quality: interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties. Theor Appl Genet 118:1519–1537. doi: 10.1007/s00122-009-1000-y CrossRefPubMedGoogle Scholar
  42. McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883. doi: 10.1139/g05-055 CrossRefPubMedGoogle Scholar
  43. McCartney CA, Somers DJ, Lukow O, Ames N, Noll J, Cloutier S, Humphreys DG, McCallum BD (2006) QTL analysis of quality traits in the spring wheat cross RL4452 × ‘AC Domain’. Plant Breed 125:565–575. doi: 10.1111/j.1439-0523.2006.01256.x CrossRefGoogle Scholar
  44. Nelson JC, Andreescu C, Breseghello F, Finney PL, Gualberto DG, Bergman CJ, Peña RJ, Perretant MR, Leroy P, Qualset CO, Sorrells ME (2006) Quantitative trait locus analysis of wheat quality traits. Euphytica 149:145–159. doi: 10.1007/s10681-005-9062-7 CrossRefGoogle Scholar
  45. Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38:141–153. doi: 10.1146/annurev.pp.38.060187.001041 CrossRefGoogle Scholar
  46. Perretant MR, Cadalen T, Charmet G, Sourdlle P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175. doi: 10.1007/s001220051420 CrossRefGoogle Scholar
  47. Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupt P (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51(4):421–429. doi: 10.1007/BF03208872 CrossRefPubMedGoogle Scholar
  48. Rasheed A, Xia X, Ogbonnaya F, Mahmood T, Zhang Z, Mujeeb-Kazi A, He ZH (2014) Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol 14:128. doi: 10.1186/1471-2229-14-128 PubMedCentralCrossRefPubMedGoogle Scholar
  49. Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V, Ebmeyer E, Bothe R, Pietsch C, Würschum T (2011) Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122:961–970. doi: 10.1007/s00122-010-1502-7 CrossRefPubMedGoogle Scholar
  50. Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and gene affecting kernel hardness in wheat. Theor Appl Genet 93:580–586. doi: 10.1007/BF00417951 CrossRefPubMedGoogle Scholar
  51. Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538. doi: 10.1007/s00122-002-1044-8 PubMedGoogle Scholar
  52. Sun X, Wu K, Zhao Y, Kong F, Han G, Jiang HM, Huang X, Li R, Wang H, Li S (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624. doi: 10.1007/s10681-008-9794-2 CrossRefGoogle Scholar
  53. Sun X, Marza F, Ma H, Carver BF, Bai G (2010) Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor Appl Genet 120:1041–1051. doi: 10.1007/s00122-009-1232-x CrossRefPubMedGoogle Scholar
  54. Suprayogi Y, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Identification and validation of quantitative trait loci for grain protein concentration in adapted Canadian durum wheat populations. Theor Appl Genet 119:437–448. doi: 10.1007/s00122-009-1050-1 PubMedGoogle Scholar
  55. Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA (2010) Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121:717–730. doi: 10.1007/s00122-010-1343-4 CrossRefPubMedGoogle Scholar
  56. Turner AS, Bradburne RP, Fish L, Snape JW (2004) New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci 40:51–60. doi: 10.1016/j.jcs.2004.03.001 CrossRefGoogle Scholar
  57. Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325. doi: 10.1007/s00122-008-0901-5 CrossRefPubMedGoogle Scholar
  58. Wang L, Li G, Peña RJ, Xia X, He Z (2010) Identification of novel allelic variants at Glu-A3 locus and development of STS markers in common wheat (Triticum aestivum L.). J Cereal Sci 51:305–312. doi: 10.1016/j.jcs.2010.01.005 CrossRefGoogle Scholar
  59. Wang J, Lin W, Wang H, Li L, Wu J, Yan X, Li X, Gao A (2011) QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica 177:277–292. doi: 10.1007/s10681-010-0267-z CrossRefGoogle Scholar
  60. Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120:13–19. doi: 10.1046/j.1439-0523.2001.00552.x CrossRefGoogle Scholar
  61. Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377. doi: 10.1007/s00122-008-0869-1 CrossRefPubMedGoogle Scholar
  62. Zhang J, Dell B, Biddulph B, Drake-Brockman F, Walker E, Khan N, Wong D, Hayden M, Appels R (2013) Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Mol Breed 32:771–783. doi: 10.1007/s11032-013-9905-1 CrossRefGoogle Scholar
  63. Zhang G, Wang Y, Guo Y, Zhao Y, Kong F, Li S (2015) Characterization and mapping of QTLs on chromosome 2D for grain size and yield traits using a mutant line induced by EMS in wheat. Crop J 3:135–144. doi: 10.1016/j.cj.2014.11.002 CrossRefGoogle Scholar
  64. Zheng BS, Le Gouis J, Leflon M, Rong WY, Laperche A, Brancourt-Hulmel M (2010) Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor Appl Genet 121(8):1501–1517. doi: 10.1007/s00122-010-1406-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fa Cui
    • 1
    • 6
  • Xiaoli Fan
    • 1
    • 2
  • Mei Chen
    • 1
    • 5
  • Na Zhang
    • 1
    • 5
  • Chunhua Zhao
    • 1
    • 6
  • Wei Zhang
    • 1
    • 6
  • Jie Han
    • 1
    • 5
  • Jun Ji
    • 1
    • 6
  • Xueqiang Zhao
    • 3
    • 6
  • Lijuan Yang
    • 4
  • Zongwu Zhao
    • 4
  • Yiping Tong
    • 3
    • 6
  • Tao Wang
    • 2
  • Junming Li
    • 1
    • 6
    Email author
  1. 1.Center for Agricultural Resources ResearchInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuangChina
  2. 2.Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  3. 3.Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  4. 4.Xinxiang Academy of Agricultural SciencesXinxiangChina
  5. 5.University of Chinese Academy of SciencesBeijingChina
  6. 6.State Key Laboratory of Plant Cell and Chromosome EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations