Advertisement

Theoretical and Applied Genetics

, Volume 129, Issue 2, pp 203–213 | Cite as

Prediction of malting quality traits in barley based on genome-wide marker data to assess the potential of genomic selection

  • Malthe Schmidt
  • Sonja Kollers
  • Anja Maasberg-Prelle
  • Jörg Großer
  • Burkhard Schinkel
  • Alexandra Tomerius
  • Andreas Graner
  • Viktor Korzun
Review

Abstract

Key message

Genomic prediction of malting quality traits in barley shows the potential of applying genomic selection to improve selection for malting quality and speed up the breeding process.

Abstract

Genomic selection has been applied to various plant species, mostly for yield or yield-related traits such as grain dry matter yield or thousand kernel weight, and improvement of resistances against diseases. Quality traits have not been the main scope of analysis for genomic selection, but have rather been addressed by marker-assisted selection. In this study, the potential to apply genomic selection to twelve malting quality traits in two commercial breeding programs of spring and winter barley (Hordeum vulgare L.) was assessed. Phenotypic means were calculated combining multilocational field trial data from 3 or 4 years, depending on the trait investigated. Three to five locations were available in each of these years. Heritabilities for malting traits ranged between 0.50 and 0.98. Predictive abilities (PA), as derived from cross validation, ranged between 0.14 to 0.58 for spring barley and 0.40–0.80 for winter barley. Small training sets were shown to be sufficient to obtain useful PAs, possibly due to the narrow genetic base in this breeding material. Deployment of genomic selection in malting barley breeding clearly has the potential to reduce cost intensive phenotyping for quality traits, increase selection intensity and to shorten breeding cycles.

Keywords

Quantitative Trait Locus Genomic Selection Spring Barley Winter Barley Training Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors greatly thank Professor Mark E. Sorrells (Cornell University, USA) and Dr. Edward Henry Byrne (KWS UK Ltd., UK) for careful reading and providing useful comments for this manuscript. This research was supported by Grant (FKZ 0315960) from the Bundesministerium Bildung und Forschung (BMBF) within the framework of the PLANT 2030 program.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

122_2015_2639_MOESM1_ESM.docx (215 kb)
Supplementary material 1 (DOCX 214 kb)
122_2015_2639_MOESM2_ESM.pdf (22 kb)
Supplementary material 2 (PDF 21 kb)
122_2015_2639_MOESM3_ESM.pdf (20 kb)
Supplementary material 3 (PDF 20 kb)
122_2015_2639_MOESM4_ESM.jpg (53 kb)
Supplementary Figure S1: Distribution of minor allele frequency of spring barley (left) and winter barley (right) over all chromosomes and also unmapped markers (JPEG 53 kb)

References

  1. Akdemir D, Sanchez JI, Jannink JL (2015) Optimization of genomic selection training populations with a genetic algorithm. Genet Sel Evol 47:38–47PubMedPubMedCentralCrossRefGoogle Scholar
  2. Albrecht T, Wimmer V, Auinger H-J, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön C-C (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350PubMedCrossRefGoogle Scholar
  3. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097PubMedPubMedCentralCrossRefGoogle Scholar
  4. Butler D (2009) ASReml R package version 3.0. https://www.vsni.co.uk/de/software/asreml/
  5. Calińskia T, Harabasza J (1974) A dendrite method for cluster analysis. Commun Stat 3:1–27CrossRefGoogle Scholar
  6. Chiapparino E, Donini P, Reeves J, Tuberosa R, O’Sullivan D (2006) Distribution of β-amylase I haplotypes among European cultivated barleys. Mol Breed 18:341–354CrossRefGoogle Scholar
  7. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:852Google Scholar
  8. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392PubMedCrossRefGoogle Scholar
  9. Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601PubMedCrossRefGoogle Scholar
  10. Endelman JB (2011) Ridge regression and other Kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255CrossRefGoogle Scholar
  11. Endelman JB, Atlin GN, Beyene Y, Semagn K, Zhang X, Sorrells ME, Jannink J-L (2014) Optimal design of preliminary yield trials with genome-wide markers. Crop Sci 54:48–59CrossRefGoogle Scholar
  12. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22PubMedPubMedCentralCrossRefGoogle Scholar
  13. Frisch M (2015) SelectionTools. http://www.fb09-pg-s207agraruni-giessende/~frisch-m/. R-Library 15.1.1
  14. Graner A, Streng S, Kellermann A, Schiemann A, Bauer E, Waugh R, Pellio B, Ordon F (1999) Molecular mapping and genetic fine-structure of the rym5 locus encoding resistance to different strains of the Barley Yellow Mosaic Virus complex. Theor Appl Genet 98:285–290CrossRefGoogle Scholar
  15. Gutiérrez L, Cuesta-Marcos A, Castro AJ, von Zitzewitz J, Schmitt M, Hayes PM (2011) Association mapping of malting quality quantitative trait loci in winter Barley: positive signals from small germplasm arrays. Plant Genome 4:256–272CrossRefGoogle Scholar
  16. Haley CS, Visscher PM (1998) Strategies to utilize marker-quantitative trait loci associations. J Dairy Sci 81:85–97PubMedCrossRefGoogle Scholar
  17. Han F, Romagosa I, Ullrich SE, Jones BL, Hayes PM, Wesenberg DM (1997) Molecular marker-assisted selection for malting quality traits in barley. Mol Breed 3:427–437CrossRefGoogle Scholar
  18. Heffner EL, Jannink J-L, Iwata H, Souza E, Sorrells ME (2011) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606CrossRefGoogle Scholar
  19. Henryon M, Berg P, Sørensen AC (2014) Animal-breeding schemes using genomic information need breeding plans designed to maximise long-term genetic gains. Livest Sci 166:38–47CrossRefGoogle Scholar
  20. Heslot N, Jannink J-L, Sorrells ME (2015) Perspectives for genomic selection applications and research in plants. Crop Sci 55:1–12CrossRefGoogle Scholar
  21. Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, Prasanna BM, Grondona M, Zambelli A, Windhausen VS, Mathews K, Gorjanc G (2014) Evaluation of genomic selection training population designs and genotyping strategies in plant breeding programs using simulation. Crop Sci 54:1476–1488CrossRefGoogle Scholar
  22. Hofmann K, Silvar C, Casas AM, Herz M, Buttner B, Gracia MP, Contreras-Moreira B, Wallwork H, Igartua E, Schweizer G (2013) Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theor Appl Genet 126:3091–3102Google Scholar
  23. Isidro J, Jannink J-L, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128:145–158PubMedPubMedCentralCrossRefGoogle Scholar
  24. Islamovic E, Obert D, Budde A, Schmitt M, Brunick R II, Kilian A, Chao S, Lazo G, Marshall J, Jellen E, Maughan P, Hu G, Klos K, Brown R, Jackson E (2014) Quantitative trait loci of barley malting quality trait components in the Stellar/01Ab8219 mapping population. Mol Breed 34:59–73CrossRefGoogle Scholar
  25. Jia Y, Jannink J-L (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192:1513–1522PubMedPubMedCentralCrossRefGoogle Scholar
  26. König J, Kopahnke D, Steffenson BJ, Przulj N, Romeis T, Röder MS, Ordon F, Perovic D (2012) Genetic mapping of a leaf rust resistance gene in the former Yugoslavian barley landrace MBR1012. Mol Breed 30:1253–1264CrossRefGoogle Scholar
  27. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756PubMedPubMedCentralGoogle Scholar
  28. Lorenzana R, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161PubMedCrossRefGoogle Scholar
  29. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  30. Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566PubMedCrossRefGoogle Scholar
  31. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’ Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2014) Vegan: community ecology package. http://www.CRANR-projectorg/package=vegan. R package version 2.2-1
  32. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012) genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113CrossRefGoogle Scholar
  33. Potokina E, Caspers M, Prasad M, Kota R, Zhang H, Sreenivasulu N, Wang M, Graner A (2004) Functional association between malting quality trait components and cDNA array based expression patterns in barley (Hordeum vulgare L.). Mol Breed 14:153–170CrossRefGoogle Scholar
  34. Rincent R, Laloë D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodríguez VM, Moreno-Gonzalez J, Melchinger A, Bauer E, Schoen CC, Meyer N, Giauffret C, Bauland C, Jamin P, Laborde J, Monod H, Flament P, Charcosset A, Moreau L (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192:715–728PubMedPubMedCentralCrossRefGoogle Scholar
  35. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci 103:18656–18661PubMedPubMedCentralCrossRefGoogle Scholar
  36. Schmid KJ, Thorwarth P (2014) Genomic Selection in Barley Breeding. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 367–378Google Scholar
  37. Shewry PR, Ullrich SE (2014) Barley: Chemistry and Technology, 2nd edn. AACC InternationalGoogle Scholar
  38. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, Atlin G, Jannink JL, McCouch SR (2015) Genomic selection and association mapping in rice Oryza sativa: effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982PubMedPubMedCentralCrossRefGoogle Scholar
  39. Utz HF (2011) PLABSTAT - Ein Computerprogramm zur statistischen Analyse von pflanzenzüchterischen Experimenten. Saatgutforschungund Populationsgenetik, Universität Hohenheim, Stuttgart, Institut für PflanzenzüchtungGoogle Scholar
  40. Wang Y, Mette MF, Miedaner T, Gottwald M, Wilde P, Reif JC, Zhao Y (2014) The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genom 15:556CrossRefGoogle Scholar
  41. Werner K, Friedt W, Ordon F (2007) Localisation and combination of resistance genes against soil-borne viruses of barley (BaMMV, BaYMV) using doubled haploids and molecular markers. Euphytica 158:323–329CrossRefGoogle Scholar
  42. Wimmer V, Albrecht T, Auinger H-J, Schoen C-C (2012) synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics 28:2086–2087PubMedCrossRefGoogle Scholar
  43. Zhao Y, Gowda M, Liu W, Würschum T, Maurer H, Longin F, Ranc N, Reif J (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776PubMedCrossRefGoogle Scholar
  44. Zhong S, Dekkers JCM, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182:355–364PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Malthe Schmidt
    • 1
  • Sonja Kollers
    • 1
  • Anja Maasberg-Prelle
    • 1
  • Jörg Großer
    • 1
  • Burkhard Schinkel
    • 1
  • Alexandra Tomerius
    • 1
    • 2
  • Andreas Graner
    • 3
  • Viktor Korzun
    • 1
  1. 1.KWS LOCHOW GMBHBergenGermany
  2. 2.AIB Dr. Alexandra TomeriusWolfenbüttelGermany
  3. 3.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany

Personalised recommendations