Advertisement

Theoretical and Applied Genetics

, Volume 129, Issue 2, pp 227–242 | Cite as

Association analysis of grapevine bunch traits using a comprehensive approach

  • Javier Tello
  • Rafael Torres-Pérez
  • Jérôme Grimplet
  • Javier IbáñezEmail author
Original Article

Abstract

Key message

A set of SNP markers associated to bunch compactness and related traits were identified in grapevine.

Abstract

Bunch compactness plays an important role in the sanitary status and perceived quality of table and wine grapes, being influenced by cultural practices and by environmental and genetic factors, which are mostly unknown. In this work, we took advantage of genetic, genomic and bioinformatic advances to analyze part of its molecular basis through a combination of transcriptomic and association analyses. Results from different transcriptomic comparisons between loose and compact grapevine clones were analyzed to select a set of candidate genes likely involved in the observed variation for bunch compactness. Up to 183 genes were sequenced in a grapevine collection, and 7032 single nucleotide polymorphisms (SNPs) were detected in more than 100 varieties with a frequency of the minor allele over 5 %. They were used to test their association in three consecutive seasons with bunch compactness and two of its most influencing factors: total berry number and length of the first ramification of the rachis. Only one SNP was associated with berry number in two seasons, suggesting the high sensitiveness of this trait to seasonal environmental changes. On the other hand, we found a set of SNPs associated with both the first ramification length and bunch compactness in various seasons, in several genes which had not previously related to bunch compactness or bunch compactness-related traits. They are proposed as interesting candidates for further functional analyses aimed to verify the results obtained in this work, as a previous step to their inclusion in marker-assisted selection strategies.

Keywords

Ramification Length Supplementary File Grapevine Variety Peroxisomal Membrane Protein Berry Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors acknowledge R. Aguirrezábal, S. Hernáiz, B. Larreina, M.I. Montemayor and E. Vaquero for their technical assistance, as well as CIDA (Gobierno de la Rioja) for the maintenance of the plant material used in this work. We acknowledge J.M. Martínez-Zapater and N. Diestro for providing unpublished data on QTL mapping. This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) through projects AGL2010-15694 and AGL2014-59171-R and grants BES-2011-047041 (JT) and RYC-2011-07791 (JG).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were carried out.

Supplementary material

122_2015_2623_MOESM1_ESM.xlsx (15 kb)
Supplementary file 1. Grapevine accessions evaluated in this studySubmitted as a.xlsx file (XLSX 14 kb)
122_2015_2623_MOESM2_ESM.pdf (155 kb)
Supplementary file 2. Phenotypic distribution of the bunch traits analyzed in this study. Submitted as a.pdf file (PDF 154 kb)
122_2015_2623_MOESM3_ESM.xlsx (35 kb)
Supplementary file 3. Candidate genes selected for next-generation sequencing. Submitted as a.xlsx file (XLSX 34 kb)
122_2015_2623_MOESM4_ESM.pdf (1.1 mb)
Supplementary file 4. Quantile–quantile (QQ) plots of observed vs expected –log10(P values) for four different association methods (blue line: GLM; violet line:GLM + Q; red line:MLM + K; green line:MLM + Q + K) for bunch compactness (BuComp), first ramification length (1RmLe) and berries per bunch (ToBeBu) in 2011, 2012 and 2013. Observed P values are expected to nearly follow the expected values, which are shown as a black line. Submitted as a.pdf file (PDF 1107 kb)
122_2015_2623_MOESM5_ESM.pdf (649 kb)
Supplementary file 5. Linkage disequilibrium (LD) among called SNPs. Every matrix represents the LD between the SNPs called per linkage group (LG: Unk, 1-12, 14-19). No SNPs were called for LG13. In each LG, first and last SNPs are indicated at the upper left and lower right corners, respectively (see Table 2 and Supplementary file 3). Every matrix is divided into two triangles: the lower one shows LD (r2), and the upper one represents the P value. Values are graphically shown according to the color code. LD matrixes are not shown at the same scale. Submitted as a.pdf file (PDF 649 kb)

References

  1. Alonso-Villaverde V, Boso S, Santiago JL, Gago P, Martínez MC (2008) Relationship between susceptibility to Botrytis bunch rot and grape cluster morphology in the Vitis vinifera L. cultivar Albariño. Int J Fruit Sci 8:251–265CrossRefGoogle Scholar
  2. Battilana J, Emanuelli F, Gambino G, Gribaudo I, Gasperi F, Boss PK, Grando MS (2011) Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284 N on Muscat flavour formation. J Exp Biol 62:5497–5508Google Scholar
  3. Becker T, Knoche M (2012) Water induces microcracks in the grape berry cuticle. Vitis 51:141–142Google Scholar
  4. Bergamini C, Cardone MF, Anaclerio A, Perniola R, Pichierri A, Genghi R, Alba V, Forleo LR, Caputo AR, Montemurro C, Blanco A, Antonacci D (2013) Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy in Vitis vinifera L. Mol Biotechnol 54:1021–1030PubMedCrossRefGoogle Scholar
  5. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedCrossRefGoogle Scholar
  6. Brink JC, Holz G, Fourie PH (2006) Effect of fungicide spray cover on Botrytis cinerea infection in grape bunches. S Afr J Enol Vitic 27:51–56Google Scholar
  7. Cardoso S, Lau W, Eiras Dias J, Fevereiro P, Maniatis N (2012) A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L. PLoS One 7:e46021PubMedPubMedCentralCrossRefGoogle Scholar
  8. Carmona MJ, Chaib J, Martínez-Zapater JM, Thomas MR (2008) A molecular genetic perspective of reproductive development in grapevine. J Exp Biol 59:2579–2596Google Scholar
  9. Carrier G, Huang YF, Le Cunff L, Fournier-Level A, Vialet S, Souquet JM, Cheynier V, Terrier N, This P (2013) Selection of candidate genes for grape proanthocyanidin pathway by an integrative approach. Plant Physiol Biochem 72:87–95PubMedCrossRefGoogle Scholar
  10. Chitwood DH, Ranjan A, Martínez CC, Headland LR, Thiem T, Kumar R, Covington MF, Hatcher T, Naylor DT, Zimmerman S, Downs N, Raymundo N, Buckler ES, Maloof DT, Aradhya M, Prins B, Li L, Myles S, Sinha NR (2014) A modern ampelography: a genetic basis for leaf shape and venation patterning in Vitis vinifera. Plant Physiol 164:259–272PubMedPubMedCentralCrossRefGoogle Scholar
  11. Coombe BG (1995) Adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110CrossRefGoogle Scholar
  12. Correa J, Mamani M, Muñoz-Espinoza C, Laborie D, Muñoz C, Pinto M, Hinrichsen P (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127:1143–1162PubMedCrossRefGoogle Scholar
  13. Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon J-M, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053PubMedPubMedCentralCrossRefGoogle Scholar
  14. Diaz-Riquelme J, Martínez-Zapater JM, Carmona MJ (2014) Transcriptional analysis of tendril and inflorescence development in grapevine (Vitis vinifera L.). PLoS One 9:e92339PubMedPubMedCentralCrossRefGoogle Scholar
  15. Díaz-Riquelme J, Grimplet J, Martinez-Zapater JM, Carmona MJ (2012) Transcriptome variation along bud development in grapevine (Vitis vinifera L.). BMC Plant Biol 12:1–13CrossRefGoogle Scholar
  16. Dragincic J, Korac N, Blagojevic B (2015) Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Comput Electron Agric 111:194–202CrossRefGoogle Scholar
  17. Drew JE, Gatehouse JA (1997) Isolation and characterization of a pea pod cDNA encoding a putative blue copper protein correlated with lignin deposition. J Exp Biol 45:1873–1884Google Scholar
  18. Dunn GM, Martin SR (2007) A functional association in Vitis vinifera L. cv. Cabernet Sauvignon between the extent of primary branching and the number of flowers formed per inflorescence. Aust J Grape Wine Res 13:95–100CrossRefGoogle Scholar
  19. Ebadi A, Coombe BG, May P (1995) Fruit-set on small Chardonnay and Shiraz vines grown under varying temperature regimes between budburst and flowering. Aust J Grape Wine Res 1:3–10CrossRefGoogle Scholar
  20. Ehret GB (2010) Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep 12:17–25PubMedPubMedCentralCrossRefGoogle Scholar
  21. Emanuelli F, Battilana J, Costantini L, Le Cunff L, Boursiquot J-M, This P, Grando MS (2010) A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol 10:241PubMedPubMedCentralCrossRefGoogle Scholar
  22. Emanuelli F, Sordo M, Lorenzi S, Battilana J, Grando MS (2014) Development of user-friendly functional molecular markers for VvDXS gene conferring muscat flavor in grapevine. Mol Breed 33:235–241PubMedPubMedCentralCrossRefGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  24. Evers D, Molitor D, Rothmeier M, Behr M, Fischer S, Hoffmann L (2010) Efficiency of different strategies for the control of grey mold on grapes including gibberellic acid (GIBB3), leaf removal and/or botrycide treatments. J Int Sci Vigne Vin 44:151–159Google Scholar
  25. Ezzili B (1993) Modification of the floral programme after the formation of the inflorescence in the principal latent buds of Vitis vinifera L. Bull l’OIV (Off Int Vigne Vin) 66:5–17Google Scholar
  26. Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664PubMedCrossRefGoogle Scholar
  27. Fermaud M (1998) Cultivar susceptibility of grape berry clusters to larvae of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 91:974–980CrossRefGoogle Scholar
  28. Fernandez L, Torregrosa L, Segura V, Bouquet A, Martínez-Zapater JM (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J 61:545–557PubMedCrossRefGoogle Scholar
  29. Fernandez L, Le Cunff L, Tello J, Lacombe T, Boursiquot JM, Fournier-Level A, Bravo G, Lalet S, Torregrosa L, This P, Martinez-Zapater JM (2014) Haplotype diversity of VvTFL1A gene and association with cluster traits in grapevine (V. vinifera). BMC Plant Biol 14:209PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp.sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139PubMedPubMedCentralCrossRefGoogle Scholar
  31. Grimplet J, Van Hermet J, Carbonell-Bejerano P, Díaz-Riquelme J, Dickerson J, Fennell A, Pezzotti M, Martínez-Zapater JM (2012) Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 5:213PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hanni E, Lardschneider E, Kelderer M (2013) Alternatives to the use of gibberellins for bunch thinning and bunch compactness reduction on grapevine. First Int Workshop Vineyard Mech Grape Wine Qual Acta Hortic 978:335–345Google Scholar
  33. Hayashi H, Nishimuri M (2003) Entering a new era of research on plant peroxisomes. Curr Opin Plant Biol 6:577–582PubMedCrossRefGoogle Scholar
  34. He H, Zhu S, Wang W, Bie T, Chen P (2011) Cloning and expression analysis of a blue copper-binding protein gene from Dasypyrum Villosum. Afr J Biotechnol 10:7155–7160Google Scholar
  35. Hed B, Ngugi HK, Travis JW (2011) Use of gibberellic acid for management of bunch rot on Chardonnay and Vignoles grape. Plant Dis 95:269–278CrossRefGoogle Scholar
  36. Hed B, Ngugi HK, Travis JW (2015) Short- and long-term effects of leaf removal and gibberellin on chardonnay grapes in the Lake Erie region of Pennsylvania. Am J Enol Vitic 66:22–29CrossRefGoogle Scholar
  37. Ibáñez J, Carreño J, Yuste J, Martínez-Zapater JM (2015) Grapevine breeding and clonal selection programmes in Spain. In: Reynolds A (ed) Grapevine breeding programs for the wine industry, 1st edn. Woodhead Publishing, Cambridge, pp 183–209Google Scholar
  38. Intrieri C, Allegro G, Valentini G, Pastore C, Colucci E, Filippetti I (2013) Effect of pre-bloom anti-transpirant treatments and leaf removal on “Sangiovese” (Vitis vinifera L.) winegrapes. Vitis 52:117–124Google Scholar
  39. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P, French-Italian Public Consortium for Grapevine Genome C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedCrossRefGoogle Scholar
  40. Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39PubMedCrossRefGoogle Scholar
  41. Jugessur A, Shi M, Gjessing HK, Lie RT, Wilcox AJ, Weinberg CR, Christensen K, Boyles AL, Daack-Hirsch S, Trung TN, Bille C, Lidral AC, Murray JC (2009) Genetic determinants of facial clefting: analysis of 357 candidates genes using two national cleft studies from Scandinavia. PLoS One 4:e5385PubMedPubMedCentralCrossRefGoogle Scholar
  42. Karaagac E, Vargas AM, de Andrés MT, Carreño I, Ibáñez J, Carreño J, Martínez-Zapater JM, Cabezas JA (2012) Marker assisted selection for seedlessness in table grape breeding. Tree Genet Genomes 8:1003–1015CrossRefGoogle Scholar
  43. Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Biol 63:4045–4060Google Scholar
  44. Kim HJ, Hinchliffe DJ, Triplett BA, Chen ZF, Stelly DM, Yeater KM, Moon HS, Gilbert MK, Thyssen GN, Turley RB, Fang DB (2015) Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS One 10:e0125046PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ky I, Lorrain B, Jourdes M, Pasquier G, Fermaud M, Gény L, Rey P, Doneche B, Teissedre PL (2012) Assessment of grey mould (Botrytis cinerea) impact on phenolic and sensory quality of Bordeaux grapes, musts and wines for two consecutive vintages. Aust J Grape Wine Res 18:215–226CrossRefGoogle Scholar
  47. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lebon G, Duchene E, Brun O, Magne C, Clement C (2004) Flower abscission and inflorescence carbohydrates in sensitive and non-sensitive cultivars of grapevine. Sex Plant Reprod 17:71–79CrossRefGoogle Scholar
  49. Lebon G, Wojnarowiez G, Holzapfel B, Fontaine F, Vaillant-Gaveau N, Clement C (2008) Sugars and flowering in the grapevine (Vitis vinifera L.). J Exp Biol 59:2565–2578Google Scholar
  50. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup aGPDP (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMedPubMedCentralCrossRefGoogle Scholar
  51. Li Y, Böck A, Haseneyer G, Korzun V, Wilde P, Schön C-C, Ankerst DP, Bauer E (2011) Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. BMC Plant Biol 11:146 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lijavetzky D, Cabezas JA, Ibáñez A, Rodriguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genom 8:424CrossRefGoogle Scholar
  53. Lu Y, Zhang S, Shah T, xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci 107:19585–19590PubMedPubMedCentralCrossRefGoogle Scholar
  54. Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Nemorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278PubMedCrossRefGoogle Scholar
  55. Marois JJ, Nelson JK, Morrison JC, Lile LS, Bledsoe AM (1986) The influence of berry contact within grape clusters on the development of Botrytis cinerea and epicuticular wax. Am J Enol Vitic 37:293–296Google Scholar
  56. Martínez-Zapater JM, Carmona MJ, Díaz-Riquelme J, Fernández L, Lijavetzky D (2010) Grapevine genetics after the genome sequence: challenges and limitations. Aust J Grape Wine Res 16:33–46CrossRefGoogle Scholar
  57. Matus JT, Loyola R, Vega A, Pena-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Biol 60(3):853–867Google Scholar
  58. May P (2000) From bud to berry, with special reference to inflorescence and bunch morphology in Vitis vinifera L. Aust J Grape Wine Res 6:82–98CrossRefGoogle Scholar
  59. Mejia N, Soto B, Guerrero M, Casanueva X, Houel C, Angeles MMD, Ramos R, Le CL, Boursiquot JM, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57PubMedPubMedCentralCrossRefGoogle Scholar
  60. Molitor D, Rothmeier M, Behr M, Fischer S, Hoffman L, Evers D (2011) Crop cultural and chemical methods to control grey mould on grapes. Vitis 50:81–87Google Scholar
  61. Molitor D, Behr M, Hoffman L, Evers D (2012a) Benefits and drawbacks of pre-bloom applications of gibberellic acid (GA3) for stem elongation in Sauvignon blanc. S Afr J Enol Vitic 33:198–202Google Scholar
  62. Molitor D, Behr M, Hoffman L, Evers D (2012b) Impact of grape cluster division on cluster morphology and bunch rot epidemic. Am J Enol Vitic 63:508–514CrossRefGoogle Scholar
  63. Moschos T (2006) Yield loss quantification and economic injury level estimation for the carpophagous generations of the European grapevine moth Lobesia botrana Den. et Schiff. (Lepidoptera: Tortricidae). Int J Pest Manag 52:141–147CrossRefGoogle Scholar
  64. Nersissian AM, Immoos C, Hill MG, Hart PJ, Williams G, Herrmann RG, Valentine JS (1998) Uclacyanins, stellacyanins, and plantacyanins are distinct subfamilies of phytocyanins: plant-specific mononuclear blue copper proteins. Protein Sci 7:1915–1929PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ogura T, Busch W (2015) From phenotypes to causal sequences: using genome wide association studies to dissect the sequence basis for variation of plant development. Curr Opin Plant Biol 23:98–108PubMedCrossRefGoogle Scholar
  66. OIV (2007) OIV descriptor list for grape varieties and Vitis species, 2nd edn. Organisation Internationale de la Vigne et du Vin, ParisGoogle Scholar
  67. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html. Accessed Jul 2015
  68. Pe’er I, Yelensky R, Alstshuler D, Daly MJ (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32:381–385PubMedCrossRefGoogle Scholar
  69. Petrie PR, Clingeleffer PR (2005) Effects of temperature and light (before and after budburst) on inflorescence morphology and flower number of Chardonnay grapevines (Vitis vinifera L.). Aust J Grape Wine Res 11:59–65CrossRefGoogle Scholar
  70. Prabhu-Dhanapal A, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LS, King CA, Cregan PB, Song Q, Fritschi FB (2015) Genome-wide association study (GWAS) of carbon isotope ratio(δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes. Theor Appl Genet 128:73–91CrossRefGoogle Scholar
  71. Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  72. Reisch BI, Owens CL, Cousins PS (2012) Grape. In: Badenes ML, Byrne DH (eds) Fruit breeding, handbook of plant breeding. Springer, New York, pp 225–262Google Scholar
  73. Ribéreau-Gayon P (1983) Alteration of wine quality caused by Botrytis damages. Vignevini 10:48–52Google Scholar
  74. Richmond TA, Bleecker AB (1999) A defect in β-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11:1911–1923PubMedPubMedCentralGoogle Scholar
  75. Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8ʹ-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sarooshi RA (1977) Some effects of girdling, gibberellic acid sprays, bunch thinning and trimming on the sultana. Aust J Exp Agric Anim Husb 17:700–704CrossRefGoogle Scholar
  77. Shavrukov YN, Dry IB, Thomas MR (2004) Inflorescence and bunch architecture development in Vitis vinifera L. Aust J Grape Wine Res 10:116–124CrossRefGoogle Scholar
  78. Shu X, Rasmussen SK (2014) Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front Plant Sci 5:197PubMedPubMedCentralCrossRefGoogle Scholar
  79. Sternad-Lemut M, Sivilotti P, Butinar L, Laganis J, Vrhovsek U (2015) Pre-flowering leaf removal alters grape microbial population and offers good potential for a more sustainable and cost-effective management of a Pinot Noir vineyard. Aust J Grape Wine Res 21(3):439–450CrossRefGoogle Scholar
  80. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456PubMedCrossRefGoogle Scholar
  81. Tello J, Aguirrezábal R, Hernaiz S, Larreina B, Montemayor MI, Vaquero E, Ibáñez J (2015a) Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Aust J Grape Wine Res 21:277–289CrossRefGoogle Scholar
  82. Tello J, Torres-Pérez R, Grimplet J, Carbonell-Bejerano P, Martínez-Zapater JM, Ibáñez J (2015b) Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine. BMC Plant Biol (in press). doi: 10.1186/s12870-015-0622-2
  83. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2012) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M (2015) Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. J Exp Bot 66(1):293–306PubMedPubMedCentralCrossRefGoogle Scholar
  85. Umezawa T, Okamoto M, Kushiro T, Nambara E, Y O, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K (2006) CYP707A3, a major ABA 8ʹ-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46:171–182PubMedCrossRefGoogle Scholar
  86. Vail ME, Marois JJ (1991) Grape cluster architecture and the susceptibility of berries to Botrytis cinerea. Phytopathology 81:188–191CrossRefGoogle Scholar
  87. Vargas A-M, Fajardo C, Borrego J, de Andrés MT, Ibáñez J (2013a) Polymorphisms in VvPel associate with variation in berry texture and bunch size in the grapevine. Aust J Grape Wine Res 19:193–207CrossRefGoogle Scholar
  88. Vargas A-M, Le Cunff L, This P, Ibáñez J, de Andrés M-T (2013b) VvGAl1 polymorphisms associate with variation for berry traits in grapevine. Euphytica 191:85–98CrossRefGoogle Scholar
  89. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883PubMedPubMedCentralCrossRefGoogle Scholar
  90. Vartholomaiou AN, Navrozidis EI, Payne CC, Salpiggidis GA (2008) Agronomic techniques to control Lobesia botrana. Phytoparasitica 36:264–271CrossRefGoogle Scholar
  91. Viana AP, Riaz S, Walker MA (2013) Genetic dissection of agronomic traits within a segregating population of breeding table grapes. Genet Mol Res 12:951–964PubMedCrossRefGoogle Scholar
  92. Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y (2012) Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci 196:125–131PubMedCrossRefGoogle Scholar
  93. Wu R, Lin M (2006) Functional mapping—how to map and study the genetic architecture of dynamic complex traits. Nat Rev Genet 7:229–237PubMedCrossRefGoogle Scholar
  94. Young PR, Vivier MA (2010) Genetics and genomic approaches to improve grape quality for winemaking. In: Reynolds AG (ed) Managing wine quality: viticulture and wine quality. Woodhead Publishing Limited, Great Abington, pp 316–364CrossRefGoogle Scholar
  95. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  96. Zabadal TJ, Dittmer TW (1998) Vine management systems affect yield, fruit quality, cluster compactness, and fruit rot of ‘Chardonnay’ grape. HortScience 33:806–809Google Scholar
  97. Zhang ZW, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu JM, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–1118PubMedPubMedCentralCrossRefGoogle Scholar
  98. Zheng H, Zhang Z, Zhang J, Ji C, Yu X, Zhang S, Tao J (2014) Male sterility and repression of the phenylpropanoid pathway in transgenic tobacco plants induced by the grapevine VvMYB4 gene cloned from “Zhong Shan Hong” (Vitis vinifera L.). XI International conference on Grapevine Breeding and Genetics, Beijing (China), p 181Google Scholar
  99. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Javier Tello
    • 1
  • Rafael Torres-Pérez
    • 1
  • Jérôme Grimplet
    • 1
  • Javier Ibáñez
    • 1
    Email author
  1. 1.Departamento de ViticulturaInstituto de Ciencias de la Vid y del Vino (ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja)LogroñoSpain

Personalised recommendations