Theoretical and Applied Genetics

, Volume 129, Issue 1, pp 17–29 | Cite as

Quantitative trait loci mapping for Gibberella ear rot resistance and associated agronomic traits using genotyping-by-sequencing in maize

  • Aida Z. Kebede
  • Tsegaye Woldemariam
  • Lana M. Reid
  • Linda J. Harris
Original Article

Abstract

Key message

Unique and co-localized chromosomal regions affecting Gibberella ear rot disease resistance and correlated agronomic traits were identified in maize.

Abstract

Dissecting the mechanisms underlying resistance to Gibberella ear rot (GER) disease in maize provides insight towards more informed breeding. To this goal, we evaluated 410 recombinant inbred lines (RIL) for GER resistance over three testing years using silk channel and kernel inoculation techniques. RILs were also evaluated for agronomic traits like days to silking, husk cover, and kernel drydown rate. The RILs showed significant genotypic differences for all traits with above average to high heritability estimates. Significant (P < 0.01) but weak genotypic correlations were observed between disease severity and agronomic traits, indicating the involvement of agronomic traits in disease resistance. Common QTLs were detected for GER resistance and kernel drydown rate, suggesting the existence of pleiotropic genes that could be exploited to improve both traits at the same time. The QTLs identified for silk and kernel resistance shared some common regions on chromosomes 1, 2, and 8 and also had some regions specific to each tissue on chromosomes 9 and 10. Thus, effective GER resistance breeding could be achieved by considering screening methods that allow exploitation of tissue-specific disease resistance mechanisms and include kernel drydown rate either in an index or as indirect selection criterion.

Supplementary material

122_2015_2600_MOESM1_ESM.pptx (200 kb)
Supplementary material 1 (PPTX 199 kb)
122_2015_2600_MOESM2_ESM.tif (920 kb)
Supplementary material 2 (TIFF 919 kb)
122_2015_2600_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 14 kb)
122_2015_2600_MOESM4_ESM.docx (14 kb)
Supplementary material 4 (DOCX 13 kb)
122_2015_2600_MOESM5_ESM.docx (14 kb)
Supplementary material 5 (DOCX 14 kb)

References

  1. Ali ML, Taylor JH, Jie L, Sun G, William M, Kasha KJ, Reid LM, Pauls KP (2005) Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48:521–533. doi:10.1139/G05-014 CrossRefPubMedGoogle Scholar
  2. Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37:1217–1223. doi:10.1038/ng1669 CrossRefPubMedGoogle Scholar
  3. Betrán FJ, Isakeit T (2004) Aflatoxin accumulation in maize hybrids of different maturities. Agron J 96:565–570. doi:10.2134/agronj2004.5650 CrossRefGoogle Scholar
  4. Bolduan C, Miedaner T, Schipprack W, Dhillon BS, Melchinger AE (2009) Genetic variation for resistance to ear rots and mycotoxins contamination in early European maize inbred lines. Crop Sci 49:2019–2028. doi:10.2135/cropsci2008.12.0701 CrossRefGoogle Scholar
  5. Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genom 15:433. doi:1471-2164/15/433CrossRefGoogle Scholar
  6. Chungu C, Mather DE, Reid LM, Hamilton RI (1996a) Comparison of techniques for inoculating maize silk, kernel, and cob tissues with Fusarium graminearum. Plant Dis 80:81–84. doi:10.1094/PD-80-0081 CrossRefGoogle Scholar
  7. Chungu C, Mather DE, Reid LM, Hamilton RI (1996b) Inheritance of Kernel resistance to Fusarium graminearum in maize. J Hered 87(5):382–385CrossRefGoogle Scholar
  8. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971PubMedPubMedCentralGoogle Scholar
  9. Davey JW, Hohenlohe PA, Etter PD, Boone JO, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510CrossRefPubMedGoogle Scholar
  10. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. doi:10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Frascaroli E, Schrag TA, Melchinger AE (2013) Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor Appl Genet 126:133–141. doi:10.1007/s00122-012-1968-6 CrossRefPubMedGoogle Scholar
  12. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lachner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229. doi:10.1126/science.1071220 CrossRefPubMedGoogle Scholar
  13. Ganal MW, Polley A, Graner E-M, Plieske J, Wieseke R, Luerssen H, Durstewitz G (2012) Large SNP arrays for genotyping in crop plants. J Biosci 37:821–828. doi:10.1007/s12038-012-9225-3 CrossRefPubMedGoogle Scholar
  14. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ et al (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9(2):e90346. doi:10.1371/journal.pone.0090346 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Haldane JBS (1919) The combination of linkage values and the calculation of distance between the loci of linked factors. J Genet 8:299–309CrossRefGoogle Scholar
  16. Hallauer AR, Carena M, Miranda Filho JB (2010) Quantitative genetics in maize breeding, 3rd edn. Iowa State University Press, AmesGoogle Scholar
  17. Harris LJ, Desjardins AE, Plattner RD, Nicholson P, Butler G, Young JC, Weston G, Proctor RH, Hohn TM (1999) Possible role of trichothecene mycotoxins in virulence of Fusarium graminearum on maize. Plant Dis 83:954–960. doi:10.1094/PDIS.1999.83.10.954 CrossRefGoogle Scholar
  18. Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161. doi:10.1016/j.pbi.2007.01.003 CrossRefPubMedGoogle Scholar
  19. Kebede AZ, Reid LM, Zhu X, Wu J, Woldemariam T, Voloaca C, Xiang K (2015) Relationship between kernel drydown rate and resistance to Gibberella ear rot in maize. Euphytica 201:79–88. doi:10.1007/s10681-014-1185-2 CrossRefGoogle Scholar
  20. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374. doi:10.1534/genetics.106.066811 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li H, Hearne S, Bänziger M, Li Z, Wang J (2010) Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity 105:257–267. doi:10.1038/hdy.2010.56 CrossRefPubMedGoogle Scholar
  22. Löffler M, Kessel B, Ouzunova M, Miedaner T (2010) Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays L.) inbred lines. Theor Appl Genet 120:1053–1062. doi:10.1007/s00122-009-1233-9 CrossRefPubMedGoogle Scholar
  23. Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339. doi:10.1146/annurev.genet.35.102401.090633 CrossRefPubMedGoogle Scholar
  24. Martin M, Miedaner T, Dhillon BS, Ufermann U, Kessel B, Ouzunova M, Schipprack W, Melchinger AE (2011) Colocalization of QTL for Gibberella ear rot resistance and low mycotoxin contamination in early european maize. Crop Sci 51:1935–1945. doi:10.2135/cropsci2010.11.0664 CrossRefGoogle Scholar
  25. Martin M, Miedaner T, Schwegler DD, Kessel B, Ouzunova M, Dhillon BS, Schipprack W, Utz HF, Melchinger AE (2012) Comparative quantitative trait loci mapping for Gibberella ear rot resistance and reduced deoxynivalenol contamination across connected maize populations. Crop Sci 52:32–43. doi:10.2135/cropsci2011.04.0214 CrossRefGoogle Scholar
  26. Mesterhazy A, Lemmens M, Reid LM (2012) Breeding for resistance to ear rots caused by Fusarium spp. in maize—a review. Plant Breed 131:1–19. doi:10.1111/j.1439-0523.2011.01936.x CrossRefGoogle Scholar
  27. Miller SS, Reid LM, Butler G, Winter SP, McGoldrick NJ (2003) Long chain alkanes in silk extracts of maize genotypes with varying resistance to Fusarium graminearum. J Agric Food Chem 51:6702–6708. doi:10.1021/jf0341363 CrossRefPubMedGoogle Scholar
  28. Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537CrossRefGoogle Scholar
  29. Munkvold GP (2003) Cultural and genetic approaches to managing mycotoxins in maize. Annu Rev Phytopathol 41:99–116. doi:10.1146/annurev.phyto.41.052002.095510 CrossRefPubMedGoogle Scholar
  30. Patterson HD, Williams ER (1976) A new class of resolvable incomplete block designs. Biometrika 63:83–92CrossRefGoogle Scholar
  31. Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B 8:39–69. doi:10.1080/10937400590889458 CrossRefGoogle Scholar
  32. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102. doi:10.3835/plantgenome2012.05.0005 CrossRefGoogle Scholar
  33. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100. doi:10.1016/S1369-5266(02)00240-6 CrossRefPubMedGoogle Scholar
  34. Reid LM, Bolton AT, Hamilton RI, Woldemariam T, Mather DE (1992) Effect of silk age on resistance of maize to Fusarium graminearum. Can J Plant Pathol 14:293–298. doi:10.1080/07060669209500867 CrossRefGoogle Scholar
  35. Reid LM, Spaner D, Mather DE, Bolton AT, Hamilton RI (1993) Resistance of maize hybrids and inbreds following silk inoculation with three isolates of Fusarium graminearum. Plant Dis 77:1248–1251. doi:10.1094/PD-77-1248 CrossRefGoogle Scholar
  36. Reid LM, Mather DE, Bolton AT, Hamilton RI (1994) Evidence for a gene for silk resistance to Fusarium graminearum Schw. ear rot of maize. J Hered 85:118–121Google Scholar
  37. Reid LM, Woldemariam T, Zhu X, Stewart DW, Schaafsma AW (2002) Effect of inoculation time and point of entry on disease severity in Fusarium graminearum, Fusarium verticillioides, or Fusarium subglutinans inoculated maize ears. Can J Plant Pathol 24:162–167. doi:10.1080/07060660309506991 CrossRefGoogle Scholar
  38. Reid LM, McDiarmid G, Parker AJ, Woldemariam T (2003) CO441 corn inbred line. Can J Plant Sci 83:79–80. doi:10.4141/P02-058 CrossRefGoogle Scholar
  39. Reid LM, Zhu X, Parker A, Yan W (2009) Increased resistance to Ustilago zeae and Fusarium verticilliodes in maize inbred lines bred for Fusarium graminearum resistance. Euphytica 165:567–578. doi:10.1007/s10681-008-9782-6 CrossRefGoogle Scholar
  40. Reid LM, Zhu X, Morrison MJ, Woldemariam T, Voloaca C, Wu J, Xiang K (2010) A non-destructive method for measuring maize kernel moisture in a breeding program. Maydica 55:163–171Google Scholar
  41. Sabrova P, Adam V, Vasatikova A, Beklova M, Zeman L, Kizek R (2010) Deoxynivalenol and its toxicity. Interdisc toxicol 3:94–99. doi:10.2478/v10102-010-0019-x Google Scholar
  42. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi:10.1126/science.1178534 CrossRefPubMedGoogle Scholar
  43. Stange M, Utz HF, Schrag TA, Melchinger AE, Würschum T (2013) High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations. Theor Appl Genet 126:2563–2574. doi:10.1007/s00122-013-2155-0 CrossRefPubMedGoogle Scholar
  44. Sutton JC (1982) Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol 4:195–209. doi:10.1080/07060668209501326 CrossRefGoogle Scholar
  45. Swarts K, Li H, Navarro JAR, An D, Romay MC, Hearne S, Acharya C, Glaubitz JC, Mitchell S, Elshire RJ, Buckler ES, Bradbury PJ (2014) Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome. doi:10.3835/plantgenome2014.05.0023 Google Scholar
  46. Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic map. Theor Appl Genet 112:30–40. doi:10.1007/s00122-005-0097-x CrossRefPubMedGoogle Scholar
  47. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. doi:10.1093/jhered/93.1.77 CrossRefPubMedGoogle Scholar
  48. Wu F (2007) Measuring the economic impacts of Fusarium toxins in animal feeds. Anim Feed Sci Technol 137:363–374. doi:10.1016/j.anifeedsci.2007.06.010 CrossRefGoogle Scholar
  49. Yang J, Carena MJ, Uphaus J (2010) Area under the dry down curve (AUDDC): a method to evaluate rate of dry down in maize. Crop Sci 50:2347–2354. doi:10.2135/cropsci2010.02.0098 CrossRefGoogle Scholar
  50. Ye J, Guo Y, Zhang D, Zhang N, Wang C, Xu M (2013) Cytological and molecular characterization of quantitative trait locus qRfg1, which confers resistance to Gibberella stalk rot in maize. MPMI 26(12):1417–1428. doi:10.1094/MPMI-06-13-0161-R CrossRefPubMedGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2015

Authors and Affiliations

  • Aida Z. Kebede
    • 1
  • Tsegaye Woldemariam
    • 1
  • Lana M. Reid
    • 1
  • Linda J. Harris
    • 1
  1. 1.Eastern Cereal and Oilseed Research CentreAgriculture and Agri-Food CanadaOttawaCanada

Personalised recommendations