Theoretical and Applied Genetics

, Volume 128, Issue 12, pp 2351–2365 | Cite as

Genomic approaches to selection in outcrossing perennials: focus on essential oil crops

  • David Kainer
  • Robert Lanfear
  • William J. Foley
  • Carsten Külheim


The yield of essential oil in commercially harvested perennial species (e.g. ‘Oil Mallee’ eucalypts, Tea Trees and Hop) is dependent on complex quantitative traits such as foliar oil concentration, biomass and adaptability. These often show large natural variation and some are highly heritable, which has enabled significant gains in oil yield via traditional phenotypic recurrent selection. Analysis of transcript abundance and allelic diversity has revealed that essential oil yield is likely to be controlled by large numbers of quantitative trait loci that range from a few of medium/large effect to many of small effect. Molecular breeding techniques that exploit this information could increase gains per unit time and address complications of traditional breeding such as genetic correlations between key traits and the lower heritability of biomass. Genomic selection (GS) is a technique that uses the information from markers genotyped across the whole genome in order to predict the phenotype of progeny well before they reach maturity, allowing selection at an earlier age. In this review, we investigate the feasibility of genomic selection (GS) for the improvement of essential oil yield. We explore the challenges facing breeders selecting for oil yield, and how GS might deal with them. We then assess the factors that affect the accuracy of genomic estimated breeding values, such as linkage disequilibrium (LD), heritability, relatedness and the genetic architecture of desirable traits. We conclude that GS has the potential to significantly improve the efficiency of selection for essential oil yield.


Linkage Disequilibrium Breeding Population Genomic Selection Best Linear Unbiased Prediction Genomic Estimate Breeding Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge funding from the Australian Research Council Linkage Programme (LP110100184) to WJF, and from the Rural Industries Research and Development Corporation (RIRDC), Australia. We are grateful to Richard Davis of GR Davis Pty Ltd for providing firsthand insight into the realities of commercial breeding for essential oils. Finally, thanks to John Henning (USDA-ARS-Forage Seed Research Center Unit, USA) for providing answers to questions on Hop breeding.

Compliance with ethical standards

Conflict of interest



  1. Baker GR, Doran JC, Williams E, Morris G (2014) Highly improved tea tree varieties to maximise profit, rural industries research and development corporation. PRJ-003689, Barton, ACTGoogle Scholar
  2. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475CrossRefPubMedGoogle Scholar
  3. Barton AF, Cotterill PP, Brooker MI (1991) Heritability of cineole yield in Eucalyptus kochii. Silvae Genet 40:37–38Google Scholar
  4. Baskorowati L, Moncur MW, Doran JC, Kanowski PJ (2010) Reproductive biology of Melaleuca alternifolia (Myrtaceae) 1. Floral biology. Aust J Bot 58:373–383CrossRefGoogle Scholar
  5. Beaulieu J, Doerksen T, Clément S, MacKay J, Bousquet J (2014) Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 113:343–352PubMedCentralCrossRefPubMedGoogle Scholar
  6. Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the Forty-Ninth Annual Corn and Sorghum Industry Research Conference, pp 250–266Google Scholar
  7. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  8. Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in Maize. Crop Sci 47:1082CrossRefGoogle Scholar
  9. Butcher PA, Matheson A, Slee MU (1996) Potential for genetic improvement of oil production in Melaleuca alternifolia and M. linariifolia. New Forest 11:31–51Google Scholar
  10. Byrne D (2007) Molecular marker use in perennial plant breeding. Acta Hortic 751:163–167CrossRefGoogle Scholar
  11. Calus MPL, Veerkamp RF (2011) Accuracy of multi-trait genomic selection using different methods. Genet Sel Evol 43:1–14CrossRefGoogle Scholar
  12. Calus MPL, Meuwissen T, de Roos APW, Veerkamp RF (2008) Accuracy of genomic selection using different methods to define haplotypes. Genetics 178:553–561PubMedCentralCrossRefPubMedGoogle Scholar
  13. CBI Ministry of Foreign Affairs (2012) Promising EU export markets for essential oils. Accessed 14 May 2014
  14. Cerenak A, Satovic Z, Jakse J, Luthar Z, Carovic-Stanko K, Javornik B (2009) Identification of QTLs for alpha acid content and yield in hop (Humulus Lupulus L.). Euphytica 170:141–154CrossRefGoogle Scholar
  15. Chu Y, Su X, Huang Q, Zhang X (2009) Patterns of DNA sequence variation at candidate gene loci in black poplar (Populus nigra L.) as revealed by single nucleotide polymorphisms. Genetica 137:141–150CrossRefPubMedGoogle Scholar
  16. Combs E, Bernardo R (2013) Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers. Plant Genome 6Google Scholar
  17. Coppen JJW (2002) Eucalyptus: the genus Eucalyptus. Taylor & Francis, LondonCrossRefGoogle Scholar
  18. Crossa J, de Los Campos G, Perez P, Gianola D, Burgueno J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724PubMedCentralCrossRefPubMedGoogle Scholar
  19. Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031PubMedCentralCrossRefPubMedGoogle Scholar
  20. Daetwyler HD, Calus MPL, Pong-Wong R, de Los Campos G, Hickey JM (2013) Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193:347–365PubMedCentralCrossRefPubMedGoogle Scholar
  21. de Los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345PubMedCentralCrossRefPubMedGoogle Scholar
  22. Denis M, Bouvet J (2013) Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet Genomes 9:37–51CrossRefGoogle Scholar
  23. Doran JC, Bell R (1994) Influence of non-genetic factors on yield of monoterpenes in leaf oils of Eucalyptus camaldulensis. New Forest 8:363–379CrossRefGoogle Scholar
  24. Doran JC, Matheson A (1994) Genetic parameters and expected gains from selection for monoterpene yields in Petford Eucalyptus camaldulensis. New Forest 8:155–167CrossRefGoogle Scholar
  25. Doran JC, Baker GR, Williams E, Southwell I (2002) Improving Australian Tea Tree through selection and breeding (1996–2001). Rural Industries and Research Development Corporation, ACTGoogle Scholar
  26. Ersoz ES, Yu J, Buckler ES (2008) Applications of linkage disequilibrium and association mapping in maize. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer Science & Business Media, pp 173–195Google Scholar
  27. Estaghvirou SBO, Ogutu JO, Schulz-Streeck T, Knaak C, Ouzunova M, Gordillo A, Piepho H (2013) Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding. BMC Genom 14:860CrossRefGoogle Scholar
  28. Falconer DS, Mackay TFC, Frankham R (1996) Introduction to quantitative genetics (4th edn). Trends Genet 12:280CrossRefGoogle Scholar
  29. Farmer EE (2014) Leaf defense. Oxford University Press, New YorkCrossRefGoogle Scholar
  30. Gianola D (2013) Priors in whole-genome regression: the bayesian alphabet returns. Genetics 194:573–596PubMedCentralCrossRefPubMedGoogle Scholar
  31. Goodger JQ, Woodrow IE (2008) Selection gains for essential oil traits using micropropagation of Eucalyptus polybractea. Forest Ecol Manag 255:3652–3658CrossRefGoogle Scholar
  32. Goodger JQ, Woodrow IE (2012) Genetic determinants of oil yield in Eucalyptus polybractea R.T. Baker. Trees 26:1951–1956CrossRefGoogle Scholar
  33. Gouy M, Rousselle Y, Bastianelli D, Lecomte P, Bonnal L, Roques D, Efile J, Rocher S, Daugrois J, Toubi L et al (2013) Experimental assessment of the accuracy of genomic selection in sugarcane. Theor Appl Genet 126:2575–2586CrossRefPubMedGoogle Scholar
  34. Grant G (1997) Genetic variation in Eucalyptus polybractea and the potential for improving leaf oil production. Thesis. Australian National University, CanberraGoogle Scholar
  35. Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929CrossRefPubMedGoogle Scholar
  36. Grattapaglia D, Resende MD (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7:241–255CrossRefGoogle Scholar
  37. Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley WJ, Külheim C, Potts BM, Myburg AA (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508CrossRefGoogle Scholar
  38. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485CrossRefPubMedGoogle Scholar
  39. Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397PubMedCentralPubMedGoogle Scholar
  40. Habier D, Fernando RL, Garrick DJ (2013) Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics 194:597–607PubMedCentralCrossRefPubMedGoogle Scholar
  41. Hall D, Tegstrom C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Briefings Funct Genom 9:157–165CrossRefGoogle Scholar
  42. Hasan O, Reid JB (1995) Reduction of generation time in Eucalyptus globulus. Plant Growth Regul 17:53–60Google Scholar
  43. Heffner EL, Lorenz AJ, Jannink J, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690CrossRefGoogle Scholar
  44. Henery ML, Moran GF, Wallis IR, Foley WJ (2007) Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. New Phytol 176:82–95CrossRefPubMedGoogle Scholar
  45. Henning J, Haunold A, Nickerson G, Gampert U (1997) Estimates of heritability and genetic correlation for five traits in female hop accessions. J Am Soc Brew Chem 55:161–165Google Scholar
  46. Heslot N, Yang H, Sorrells ME, Jannink J (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160CrossRefGoogle Scholar
  47. Heuertz M, de Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174:2095–2105PubMedCentralCrossRefPubMedGoogle Scholar
  48. Hill WG (2012) Quantitative genetics in the genomics era. Curr Genomics 13:196–206PubMedCentralCrossRefPubMedGoogle Scholar
  49. Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs—challenges and opportunities. In: New directions for a diverse planet. Proceedings of the 4th International Crop Science Congress, pp 1–13Google Scholar
  50. Homer LE, Leach DN, Lea D, Slade Lee L, Henry RJ, Baverstock PR (2000) Natural variation in the essential oil content of Melaleuca alternifolia Cheel (Myrtaceae). Biochem Syst Ecol 28:367–382CrossRefPubMedGoogle Scholar
  51. Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136:303–310CrossRefPubMedGoogle Scholar
  52. Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922CrossRefPubMedGoogle Scholar
  53. Isik F (2014) Genomic selection in forest tree breeding: the concept and an outlook to the future. New Forest 45:379–401CrossRefGoogle Scholar
  54. Izadi-Darbandi A, Bahmani K, Ramshini A, Moradi N (2013) Heritability estimates of agronomic traits and essential oil content in Iranian fennels. J Agric Sci Technol 15:1275–1283Google Scholar
  55. Jannink J, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177CrossRefGoogle Scholar
  56. Keszei A, Hassan Y, Foley WJ (2010) A biochemical interpretation of terpene chemotypes in Melaleuca alternifolia. J Chem Ecol 36:652–661CrossRefPubMedGoogle Scholar
  57. King DJ, Gleadow RM, Woodrow IE (2004) Terpene deployment in Eucalyptus polybractea; relationships with leaf structure, environmental stresses, and growth. Funct Plant Biol 31:451–460CrossRefGoogle Scholar
  58. King DJ, Gleadow RM, Woodrow IE (2006) The accumulation of terpenoid oils does not incur a growth cost in Eucalyptus polybractea seedlings. Funct Plant Biol 33:497–505CrossRefGoogle Scholar
  59. Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness-and wood quality-related candidate genes in Douglas fir. Genetics 171:2029–2041PubMedCentralCrossRefPubMedGoogle Scholar
  60. Külheim C, Yeoh SH, Maintz J, Foley WJ, Moran GF (2009) Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genom 10:452CrossRefGoogle Scholar
  61. Külheim C, Yeoh SH, Wallis IR, Laffan S, Moran GF, Foley WJ (2011) The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol 191:1041–1053CrossRefPubMedGoogle Scholar
  62. Kulkarni R, Baskaran K, Ramesh S (2003) Five cycles of recurrent selection for increased essential oil content in East Indian lemongrass: response to selection, and effects on heritabilities of traits and intertrait correlations. Plant Breeding 122:131–135CrossRefGoogle Scholar
  63. Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, Carlisle C, Zhang T (2012) Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS One 7:e36674PubMedCentralCrossRefPubMedGoogle Scholar
  64. Kumar B, Mali H, Gupta E (2014) Genetic variability, character association, and path analysis for economic traits in menthofuran rich half-sib seed progeny of Mentha piperita L. Biomed Res Int 2014:1–7. Article ID 150830. doi: 10.1155/2014/150830
  65. Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai C, Clark D, Rocheford TR, Dudley JW (2004) The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168:2141–2155PubMedCentralCrossRefPubMedGoogle Scholar
  66. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N et al (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50CrossRefPubMedGoogle Scholar
  67. Lijavetzky D, Cabezas JA, Ibáñez A, Rodríguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genom 8:424CrossRefGoogle Scholar
  68. Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J (2011) Genomic selection in plant breeding: knowledge and prospects. In: Sparks DL (ed) Advances in agronomy. Academic Press, San Diego, pp 77–123Google Scholar
  69. Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161CrossRefPubMedGoogle Scholar
  70. Luby JJ, Shaw DV (2001) Does marker-assisted selection make dollars and sense in a fruit breeding program? HortScience 36:872–879Google Scholar
  71. Massman JM, Jung HG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53:58–66CrossRefGoogle Scholar
  72. McAdam EL, Freeman JS, Whittock SP, Buck EJ, Jakse J, Cerenak A, Javornik B, Kilian A, Wang C, Andersen D et al (2013) Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry. BMC Genom 14:360CrossRefGoogle Scholar
  73. McAdam EL, Vaillancourt RE, Koutoulis A, Whittock SP (2014) Quantitative genetic parameters for yield, plant growth and cone chemical traits in hop (Humulus lupulus L.). BMC Genet 15:22PubMedCentralCrossRefPubMedGoogle Scholar
  74. Meuwissen T, Goddard ME (2010) Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 185:623–631PubMedCentralCrossRefPubMedGoogle Scholar
  75. Meuwissen T, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedCentralPubMedGoogle Scholar
  76. Moser G, Tier B, Crump RE, Khatkar MS, Raadsma HW (2009) A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel Evol 41:56PubMedCentralCrossRefPubMedGoogle Scholar
  77. Murakami A (1999) Inheritance of major chemical components in Hops. J I Brew 105:107–111CrossRefGoogle Scholar
  78. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D et al (2014) The genome of Eucalyptus grandis. Nature 510:356–362PubMedGoogle Scholar
  79. Myles S, Peiffer JA, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell Online 21:2194–2202CrossRefGoogle Scholar
  80. Myles S, Chia J, Hurwitz B, Simon C, Zhong GY, Buckler ES, Ware D (2010) Rapid genomic characterization of the genus Vitis. PLoS One 5:e8219PubMedCentralCrossRefPubMedGoogle Scholar
  81. Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot Lond 110:1303–1316CrossRefGoogle Scholar
  82. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330CrossRefPubMedGoogle Scholar
  83. O’Reilly-Wapstra JM, Freeman JS, Davies NW, Vaillancourt RE, Fitzgerald H, Potts BM (2011) Quantitative trait loci for foliar terpenes in a global eucalypt species. Tree Genet Genomes 7:485–498CrossRefGoogle Scholar
  84. Ogutu JO, Schulz-Streeck T, Piepho H (2012) Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc 6(Suppl 2):S10PubMedCentralCrossRefPubMedGoogle Scholar
  85. Oliveira EJ, Resende MD, Silva Santos V, Ferreira CF, Oliveira GAF, Silva MS, Oliveira LA, Aguilar-Vildoso CI (2012) Genome-wide selection in cassava. Euphytica 187:263–276CrossRefGoogle Scholar
  86. Olson MS, Robertson AL, Takebayashi N, Silim S, Schroeder WR, Tiffin P (2010) Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera). New Phytol 186:526–536CrossRefPubMedGoogle Scholar
  87. Pank F (2010) Aims and results of breeding research on eight medicinal and aromatic plants—a survey. Isr J Plant Sci 58:241–249CrossRefGoogle Scholar
  88. Pearson M (1993) The Good Oil. Eucalyptus oil distillieries in Australia. Australas Hist Archaeol 11:99–107Google Scholar
  89. Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111CrossRefPubMedGoogle Scholar
  90. Resende MD, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA et al (2012a) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128CrossRefPubMedGoogle Scholar
  91. Resende MFR, Munoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M (2012b) Accuracy of genomic selection methods in a standard data set of Loblolly pine (Pinus taeda L.). Genetics 190:1503–1510PubMedCentralCrossRefPubMedGoogle Scholar
  92. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA et al (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14:R55PubMedCentralCrossRefPubMedGoogle Scholar
  93. Speed D, Balding DJ (2014) MultiBLUP: improved SNP-based prediction for complex traits. Genome Res 24:1550–1557PubMedCentralCrossRefPubMedGoogle Scholar
  94. Thavamanikumar S, McManus LJ, Tibbits JF, Bossinger G (2011) The significance of single nucleotide polymorphisms (SNPs) in Eucalyptus globulus breeding programs. Austral For 74:23–29CrossRefGoogle Scholar
  95. Thavamanikumar S, Southerton SG, Bossinger G, Thumma BR (2013) Dissection of complex traits in forest trees—opportunities for marker-assisted selection. Tree Genet Genomes 9:627–639CrossRefGoogle Scholar
  96. Thumma BR (2005) Polymorphisms in Cinnamoyl CoA Reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265PubMedCentralCrossRefPubMedGoogle Scholar
  97. Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849PubMedCentralPubMedGoogle Scholar
  98. Webb H, Lanfear R, Hamill J, Foley WJ, Külheim C (2013) The yield of essential oils in Melaleuca alternifolia (Myrtaceae) is regulated through transcript abundance of genes in the MEP pathway. PLoS One 8:e60631PubMedCentralCrossRefPubMedGoogle Scholar
  99. Webb H, Foley WJ, Külheim C (2014) The genetic basis of foliar terpene yield: implications for breeding and profitability of Australian essential oil crops. Plant Biotechnol 31:363–376CrossRefGoogle Scholar
  100. Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824CrossRefPubMedGoogle Scholar
  101. Würschum T, Reif JC, Kraft T, Janssen G, Zhao Y (2013) Genomic selection in sugar beet breeding populations. BMC Genet 14:85PubMedCentralCrossRefPubMedGoogle Scholar
  102. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569PubMedCentralCrossRefPubMedGoogle Scholar
  103. Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin FH, Ranc N, Reif JC (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776CrossRefPubMedGoogle Scholar
  104. Zhao Y, Mette MF, Gowda M, Longin FH, Reif JC (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645PubMedCentralCrossRefPubMedGoogle Scholar
  105. Zhong S, Dekkers JCM, Fernando RL, Jannink J (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182:355–364PubMedCentralCrossRefPubMedGoogle Scholar
  106. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • David Kainer
    • 1
  • Robert Lanfear
    • 2
  • William J. Foley
    • 1
  • Carsten Külheim
    • 1
  1. 1.Research School of BiologyThe Australian National UniversityCanberraAustralia
  2. 2.Department of Biological SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations