Advertisement

Theoretical and Applied Genetics

, Volume 128, Issue 9, pp 1813–1825 | Cite as

Fine mapping of qGW1, a major QTL for grain weight in sorghum

  • Lijie Han
  • Jun Chen
  • Emma S. Mace
  • Yishan Liu
  • Mengjiao Zhu
  • Nana Yuyama
  • David R. Jordan
  • Hongwei Cai
Original Paper

Abstract

Key message

We detected seven QTLs for 100-grain weight in sorghum using an F 2 population, and delimited qGW1 to a 101-kb region on the short arm of chromosome 1, which contained 13 putative genes.

Abstract

Sorghum is one of the most important cereal crops. Breeding high-yielding sorghum varieties will have a profound impact on global food security. Grain weight is an important component of grain yield. It is a quantitative trait controlled by multiple quantitative trait loci (QTLs); however, the genetic basis of grain weight in sorghum is not well understood. In the present study, using an F2 population derived from a cross between the grain sorghum variety SA2313 (Sorghum bicolor) and the Sudan-grass variety Hiro-1 (S. bicolor), we detected seven QTLs for 100-grain weight. One of them, qGW1, was detected consistently over 2 years and contributed between 20 and 40 % of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants from a fine-mapping F3 population, we delimited qGW1 to a 101-kb region on the short arm of chromosome 1, containing 13 predicted gene models, one of which was found to be under purifying selection during domestication. However, none of the grain size candidate genes shared sequence similarity with previously cloned grain weight-related genes from rice. This study will facilitate isolation of the gene underlying qGW1 and advance our understanding of the regulatory mechanisms of grain weight. SSR markers linked to the qGW1 locus can be used for improving sorghum grain yield through marker-assisted selection.

Keywords

Phenotypic Variation Sorghum Simple Sequence Repeat Marker Cetyl Trimethyl Ammonium Bromide Sorghum Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2015_2549_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Abe Y, Mieda K, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y (2010) The small and round seed1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes Genet System 85:327–339CrossRefGoogle Scholar
  2. Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, Barret P (2012) Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. J Exp Bot 63:5945–5955CrossRefPubMedGoogle Scholar
  3. Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C et al (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386PubMedCentralPubMedGoogle Scholar
  4. Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942CrossRefPubMedGoogle Scholar
  5. Charcosset A, Gallais A (1996) Estimation of the contribution of quantitative trait loci (QTL) to the variance of a quantitative trait by means of genetic markers. Theor Appl Genet 93:1193–1201CrossRefPubMedGoogle Scholar
  6. Cheng W, Taliercio EW, Chourey PS (1996) The Míniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8:971–983PubMedCentralCrossRefPubMedGoogle Scholar
  7. Darvasi A (1997) The effect of selective genotyping on QTL mapping accuracy. Mamm Genome 8:67–68CrossRefPubMedGoogle Scholar
  8. Diouf J (2009) How to feed the world in 2050. Popul Dev Rev 35:837–839CrossRefGoogle Scholar
  9. Dunnington EA, Haberefeld A, Stallard LG, Siegel PB, Hillel J (1992) Deoxyribonucleic-acid fingerprint bands linked to loci coding for quantitative traits in chicken. Poult Sci 71:1251–1258CrossRefPubMedGoogle Scholar
  10. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171CrossRefPubMedGoogle Scholar
  11. Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305CrossRefPubMedGoogle Scholar
  12. Gilbert N (2009) Averting a climate-led food crisis in Africa. Nature. doi: 10.1038/news.2009.585 Google Scholar
  13. Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11:228–231CrossRefPubMedGoogle Scholar
  14. Hillel J, Avner R, Baxter-Jones C, Dunnington EA, Cahaner A, Siegel PB (1990) DNA fingerprints from blood mixes in chickens and turkeys. Anim Biotech 2:201–204CrossRefGoogle Scholar
  15. Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–711CrossRefPubMedGoogle Scholar
  16. Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6CrossRefPubMedGoogle Scholar
  17. Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y (2010) A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol 51(8):1315–1329CrossRefPubMedGoogle Scholar
  18. Li ML, Yuyama N, Luo L, Hirata M, Cai HW (2009) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed 24:41–47CrossRefGoogle Scholar
  19. Li Q, Li L, Yang XH, Warburton ML, Bai GH, Dai JR, Li JS, Yan JB (2010) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143–156PubMedCentralCrossRefPubMedGoogle Scholar
  20. Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ et al (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269CrossRefPubMedGoogle Scholar
  21. Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191CrossRefPubMedGoogle Scholar
  22. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nature Commun 4Google Scholar
  23. Manly KF, Cudmore RH, Meer JM (2001) Map Manager QTX: cross-platform software for genetic mapping. Mamm Genome 12:930–932CrossRefPubMedGoogle Scholar
  24. Maranville JW, Clegg MD (1977) Influence of seed size and density on germination, seedling emergence, and yield of grain sorghum. Agron J 69:329–330CrossRefGoogle Scholar
  25. McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13Google Scholar
  26. Mullet JE, Rooney WL, Klein PE, Morishige D, Murphy R, Brady JA (2012) Discovery and utilization of sorghum genes (MA5/MA6). US Patent 8309793Google Scholar
  27. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCentralCrossRefPubMedGoogle Scholar
  28. Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179CrossRefGoogle Scholar
  29. Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S, Nakamura H, Ichikawa H, Mori M (2012) Short grain1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol 158(3):1208–1219PubMedCentralCrossRefPubMedGoogle Scholar
  30. Paterson AH (2008) Genomics of sorghum. Int J Plant Genomic. doi: 10.1155/2008/362451 Google Scholar
  31. Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1717CrossRefPubMedGoogle Scholar
  32. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  33. Pereira MG, Ahnert D, Lee M, Klier K (1995) Genetic mapping of quantitative trait loci for panicle characteristics and seed weight in sorghum. Braz J Genet 18:249–257Google Scholar
  34. Plotsky Y, Cahaner A, Haberfeld A, Lavi U, Lamont SJ, Hillel J (1993) DNA fingerprint bands applied to linkage analysis with quantitative trait loci in chickens. Anim Genet 24:105–110CrossRefPubMedGoogle Scholar
  35. Rajkumar Fakrudin B, Kavil SP, Girma Y, Arun SS, Dadakhalandar D, Gurusiddesh BH, Patil AM et al (2013) Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench). Physiol Mol Biol Plants 19:409–419PubMedCentralCrossRefPubMedGoogle Scholar
  36. Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616CrossRefGoogle Scholar
  37. Rampling LR, Harker N, Shariflou MR, Morell MK (2001) Detection and analysis systems for microsatellite markers in wheat. Aust J Agric Res 52:1131–1141CrossRefGoogle Scholar
  38. Sakhi S, Shehzad T, Rehman S, Okuno K (2013) Mapping the QTLs underlying drought stress at developmental stage of sorghum (Sorghum bicolor (L.) Moench) by association analysis. Euphytica 193:433–450CrossRefGoogle Scholar
  39. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1114CrossRefPubMedGoogle Scholar
  40. Segami S, Kono I, Ando T, Yano M, Kitano H, Miura K, Iwasaki Y (2012) Small and round seed 5 gene encodes alphatubulin regulating seed cell elongation in rice. Rice 5:4PubMedCentralCrossRefPubMedGoogle Scholar
  41. Shehzad T, Okuno K (2015) QTL mapping for yield and yield-contributing traits in sorghum (Sorghum bicolor (L.) Moench) with genome-based SSR markers. Euphytica 203:17–31CrossRefGoogle Scholar
  42. Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet 121:323–336CrossRefPubMedGoogle Scholar
  43. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1027CrossRefPubMedGoogle Scholar
  44. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630CrossRefPubMedGoogle Scholar
  45. Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454CrossRefPubMedGoogle Scholar
  46. Sun LJ, Li XJ, Fu YC, Zhu ZF, Tan LB, Liu FX, Sun XY, Sun XW, Sun CQ (2013) GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J Integr Plant Biol 55:938–949PubMedGoogle Scholar
  47. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233CrossRefPubMedGoogle Scholar
  48. The International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  49. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH et al (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284CrossRefPubMedGoogle Scholar
  50. Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448CrossRefGoogle Scholar
  51. Upadhyaya HD, Wang YH, Sharma S, Singh S, Hasenstein KH et al (2012) SSR markers linked to kernel weight and tiller number in sorghum identified by association mapping. Euphytica 187:401–410CrossRefGoogle Scholar
  52. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  53. Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W et al (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374CrossRefPubMedGoogle Scholar
  54. Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT et al (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954CrossRefPubMedGoogle Scholar
  55. Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X et al (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209CrossRefPubMedGoogle Scholar
  56. Yonemaru J, Ando T, Mizubayashi T, Kasuga S, Matsumoto T, Yano M (2009) Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Res 16:187–193PubMedCentralCrossRefPubMedGoogle Scholar
  57. Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, Zhang BS, Jia JZ (2012a) TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol 195:574–584CrossRefPubMedGoogle Scholar
  58. Zhang XJ, Wang JF, Huang J, Lan HX, Wang CL, Yin CF, Wu YY, Tang HJ, Qian Q, Li JY, Zhang HS (2012b) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Nat Acad Sci USA 109:21534–21539PubMedCentralCrossRefPubMedGoogle Scholar
  59. Zhang D, Li J, Compton RO, Robertson J, Goff VH, Epps E, Kong W, Kim C, Paterson AH (2015) Comparative genetics of seed size traits in divergent cereal lineages represented by sorghum (Panicoidae) and rice (Oryzoidae). G3: doi: 10.1534/g3.115.017590
  60. Zuo JR, Li JY (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99–118CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lijie Han
    • 1
    • 2
  • Jun Chen
    • 1
    • 2
  • Emma S. Mace
    • 3
  • Yishan Liu
    • 1
    • 2
  • Mengjiao Zhu
    • 1
    • 2
  • Nana Yuyama
    • 4
  • David R. Jordan
    • 5
  • Hongwei Cai
    • 1
    • 2
    • 4
  1. 1.Department of Plant Genetics and Breeding, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Crop Genetic Improvement and Genome, Ministry of AgricultureBeijingChina
  3. 3.Department of Agriculture and Fisheries (DAF)WarwickAustralia
  4. 4.Forage Crop Research InstituteJapan Grassland Agricultural and Forage Seed AssociationNasushiobaraJapan
  5. 5.Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandWarwickAustralia

Personalised recommendations