Theoretical and Applied Genetics

, Volume 128, Issue 7, pp 1243–1259 | Cite as

Development and evaluation of near-isogenic lines for major blast resistance gene(s) in Basmati rice

  • Apurva Khanna
  • Vinay Sharma
  • Ranjith K. Ellur
  • Asif B. Shikari
  • S. Gopala Krishnan
  • U. D. Singh
  • G. Prakash
  • T. R. Sharma
  • Rajeev Rathour
  • Mukund Variar
  • S. K. Prashanthi
  • M. Nagarajan
  • K. K. Vinod
  • Prolay K. Bhowmick
  • N. K. Singh
  • K. V. Prabhu
  • B. D. Singh
  • Ashok K. Singh
Original Paper

Abstract

Key message

A set of NILs carrying major blast resistance genes in a Basmati rice variety has been developed. Also, the efficacy of pyramids over monogenic NILs against rice blast pathogenMagnaporthe oryzaehas been demonstrated.

Abstract

Productivity and quality of Basmati rice is severely affected by rice blast disease. Major genes and QTLs conferring resistance to blast have been reported only in non-Basmati rice germplasm. Here, we report incorporation of seven blast resistance genes from the donor lines DHMASQ164-2a (Pi54, Pi1, Pita), IRBLz5-CA (Pi2), IRBLb-B (Pib), IRBL5-M (Pi5) and IRBL9-W (Pi9) into the genetic background of an elite Basmati rice variety Pusa Basmati 1 (PB1). A total of 36 near-isogenic lines (NILs) comprising of 14 monogenic, 16 two-gene pyramids and six three-gene pyramids were developed through marker-assisted backcross breeding (MABB). Foreground, recombinant and background selection was used to identify the plants with target gene(s), minimize the linkage drag and increase the recurrent parent genome (RPG) recovery (93.5–98.6 %), respectively, in the NILs. Comparative analysis performed using 50,051 SNPs and 500 SSR markers revealed that the SNPs provided better insight into the RPG recovery. Most of the monogenic NILs showed comparable performance in yield and quality, concomitantly, Pusa1637-18-7-6-20 (Pi9), was significantly superior in yield and stable across four different environments as compared to recurrent parent (RP) PB1. Further, among the pyramids, Pusa1930-12-6 (Pi2+Pi5) showed significantly higher yield and Pusa1633-7-8-53-6-8 (Pi54+Pi1+Pita) was superior in cooking quality as compared to RP PB1. The NILs carrying gene Pi9 were found to be the most effective against the concoction of virulent races predominant in the hotspot locations for blast disease. Conversely, when analyzed under artificial inoculation, three-gene pyramids expressed enhanced resistance as compared to the two-gene and monogenic NILs.

Supplementary material

122_2015_2502_MOESM1_ESM.doc (118 kb)
Foreground selection for the blast resistance genes using respective gene-linked molecular markers. Legend- M- 50 bp ladder, R- Pusa Basmati-1, D1- DHMAS70Q164-2a, D2: IRBLz5-CA, D3: IRBLb-B, D4 IRBL5-M, D5: IRBL9-W, 1-5: PB1 Nils carrying respective blast resistance genes (DOC 118 kb)
122_2015_2502_MOESM2_ESM.jpg (2.3 mb)
Scatter diagram of GGE biplot analysis depicting the mega environments and the performance of monogenic NILs across 4 locations. G1 -Pusa 1633-1-8-6-8-12, G2-Pusa 1633-1-8-6-23-7, G3-Pusa 1633-2-8-12-9-10, G4-Pusa 1633-2-8-1-4-18. G5-Pusa 1633-3-8-8-16-1, G6-Pusa 1633-3-8-20-6-12, G7-Pusa 1634-8-1-12-15, G8-Pusa 1634-4-9-6-23, G9-Pusa 1635-10-6-8-10, G10-Pusa 1635-10-5-6-18, G11-Pusa 1636-12-9-8-17, G12-Pusa 1636-12-9-12-4, G13-Pusa 1637-18-7-6-20, G14-Pusa 1637-12-8-20-5, G15- PB1(JPEG 2363 kb)
122_2015_2502_MOESM3_ESM.jpg (2 mb)
Gel consistency length (mm) of RP PB1, DP- DHMASQ164-2a and the NILs (1-11) carrying blast resistance genes(JPEG 2082 kb)
122_2015_2502_MOESM4_ESM.tif (3.7 mb)
Graphical representation of RPG recovery using SNP and SSR markers in Pi9 carrying NILs. In each of the chromosomes first bar represents the NIL Pusa 1637-18-7-6-20 and second bar represents the NIL Pusa 1637-12-8-20-5(TIFF 3838 kb)
122_2015_2502_MOESM5_ESM.jpg (6.2 mb)
Supplementary material 5 (JPEG 6303 kb)

References

  1. APEDA (2011) www.apeda.gov.in. Accessed 20 Nov 2011
  2. Basavaraj SH, Singh VK, Singh A, Singh A, Singh A, Anand D, Yadav S, Ellur RK, Singh D, Gopala Krishnan S, Nagarajan M, Mohapatra T, Prabhu KV, Singh AK (2010) Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol Breed 26(2):293–305CrossRefGoogle Scholar
  3. Bonman JM, Vergel de Dios TI, Khin MM (1986) Physiologic specialization of Pyricularia oryzae in the Philippines. Plant Dis 70:767–769CrossRefGoogle Scholar
  4. Brunner S, Stirnweis D, Diaz Quijano C, Buesing G, Herren G, Parlange F, Barret P, Tassy C, Sautter C, Winzeler M, Keller B (2012) Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field. Plant Biotechnol J 10:398–409PubMedCrossRefGoogle Scholar
  5. Casela CR, Alexandre SF, Zeller KA, Levy M (1995) Pathotype variation in the sorghum anthracnose fungus: a phylogenetic perspective for resistance breeding. In: Leslie JF, Frederiksen RA (eds) Disease analysis through genetics and molecular biology: interdisciplinary bridges to improved sorghum and millet crops. Iowa State University Press, Ames, Iowa, pp 257–276Google Scholar
  6. Chen S, Xu CG, Lin XH, Zhang Q (2008) Improving bacterial blight resistance of ‘6078’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breed 120(2):133–137CrossRefGoogle Scholar
  7. Ellur RK, Singh AK, Gupta HS (2013) Enhancing Rice Productivity in India: Aspects and Prospects. In: Shetty PK, Ayyappan S, Swaminathan MS (eds) Climate change and sustainable food security. National Institute of Advanced Studies, IISC, Bangalore and Indian Council of Agricultural Research, New Delhi, pp 99–132Google Scholar
  8. Fukuoka S, Yamamoto S, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TTT, Koizumi S, Sugimoto K, Matsumoto T, Yano M (2014) Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep 4:4550CrossRefGoogle Scholar
  9. Gnanamanickam SS, Babujee L, Priyadarisini VB, Dayakar BV, Leenakumari D, Sivaraj R, Levy M, Leong SA (2000) Lineage-exclusion resistance breeding: pyramiding of blast resistance genes for management of rice blast in India. In: Tharreau D, Lebrun MH, Talbot NJ and Notteghem JL (eds) Advances in rice blast research, developments in plant pathology, vol 15, pp 172–179Google Scholar
  10. Gopalakrishnan S, Sharma RK, Rajkumar KA, Joseph M, Singh VP, Singh AK, Bhat KV, Singh NK, Mohapatra T (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed 127:131–139CrossRefGoogle Scholar
  11. Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100(7):1121–1128CrossRefGoogle Scholar
  12. Imam J, Alam S, Mandal NP, Variar M, Shukla P (2014) Molecular screening for identification of blast resistance genes in north east and eastern Indian rice germplasm (Oryza sativa L.) with PCR based makers. Euphytica 196:199–211CrossRefGoogle Scholar
  13. Joseph M, Gopalakrishnan S, Sharma RK, Singh AK, Singh VP, Singh NK, Mohapatra T (2004) Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker assisted selection in rice. Mol Breed 13:377–387CrossRefGoogle Scholar
  14. Juliano BO (1971) A simplified assay for milled rice amylose. Cereal Sci Today 16:334–338Google Scholar
  15. Khush GS (2005) What it will take to Feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6PubMedCrossRefGoogle Scholar
  16. Kumar MKP, Gowda DKS, Moudgal R, Kumar NK, Gowda KTP, Vishwanath K (2013) Impact on fungicides on rice production in India. In: Nita M (ed) Fungicides-showcases of integrated plant disease management from around the world. ISBN: 978-953-51-1130-6, InTech, doi:10.5772/51009. http://www.intechopen.com/books/fungicides-showcases-of-integrated-plant-disease-management-from-around-the-world/impact-of-fungicides-on-rice-production-in-india
  17. Latter BDH, McIntosh RA, Ellison FW, Brennan PS, Fisher J, Hollamby GJ, Rathjen AJ, Wilson RE (1998) Grains yields of near-isogenic lines with added genes for stem rust resistance. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium. Institute for Plant Science Research, Cambridge, UK, pp 901–906Google Scholar
  18. Little RR, Hilder GB, Dawson EH (1958) Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem 35:111–126Google Scholar
  19. Luthra JK, Rao MV (1979) Multiline cultivars—How their resistance influence leaf rust disease in wheat. Euphytica 28(1):137–144CrossRefGoogle Scholar
  20. Lv Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L (2013) Functional Analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology 103(6):594–599PubMedCrossRefGoogle Scholar
  21. Murray HG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucl Acids Res 8:4321–4325PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ortelli S, Winzeler H, Winzeler M, Fried PM, Nösberger J (1996) Leaf rust resistance gene Lr9 and winter wheat yield reduction: I yield and yield components. Crop Sci 36:1590–1595CrossRefGoogle Scholar
  23. SES (1996) Standard evaluation system for rice. International Rice Research Institute, Manila, Philippines, p 56Google Scholar
  24. Singh AK, Gopala Krishnan S, Singh VP, Prabhu KV, Mohapatra T, Singh NK, Sharma TR, Nagarajan M, Vinod KK, Singh D, Singh UD, Chander S, Atwal SS, Seth R, Singh VK, Ellur RK, Singh A, Anand D, Khanna A, Yadav S, Goel N, Singh A, Shikari AB Singh A, Marathi B (2011) Marker assisted selection: a paradigm shift in Basmati breeding. Indian J Genet 71(2) special Issue: 1–9Google Scholar
  25. Singh VK, Singh A, Singh SP, Ellur RK, Choudhary V, Sarkel S, Singh D, Gopala Krishnan S, Nagarajan M, Vinod KK, Singh UD, Rathore R, Prashanthi SK, Agrawal PK, Bhatt JC, Mohapatra T, Prabhu KV, Singh AK (2012) Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line through marker assisted backcross breeding. Field Crops Res 128:8–16CrossRefGoogle Scholar
  26. Singh VK, Singh A, Singh SP, Ellur RK, Singh D, Gopala Krishnan S, Bhowmick PK, Nagarajan M, Vinod KK, Singh UD, Mohapatra T, Prabhu KV, Singh AK (2013) Marker-assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Pi2 and Pi54 into an elite Basmati rice restorer line PRR78. Plant Breed 132(5):486–495Google Scholar
  27. Sood BC, Siddiq EA (1978) A rapid technique for scent determinations in rice. Indian J Genet 38:2268–2271Google Scholar
  28. Tsunematsu H, Yanoria MJT, Ebron LA, Hayashi N, Ando I, Kato H, Imbe T, Khush GS (2000) Development of monogenic lines of rice for blast resistance. Breed Sci 50:229–234CrossRefGoogle Scholar
  29. Variar M, Vera Cruz CM, Carrillo MG, Bhatt JC, Sangar RBS (2009) Rice blast in India and strategies to develop durably resistant cultivars. In: Xiaofan W, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer, New York, pp 359–374CrossRefGoogle Scholar
  30. Yanoria T, Koide Y, Fukuta Y, Imbe I, Kato H, Tsunematsu H, Kobayashi N (2010) Development of near-isogenic lines of Japonica-type rice variety Lijiangxintuanheigu as differentials for blast resistance. Breed Sci 60:629–638CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Apurva Khanna
    • 1
  • Vinay Sharma
    • 2
  • Ranjith K. Ellur
    • 1
  • Asif B. Shikari
    • 3
  • S. Gopala Krishnan
    • 1
  • U. D. Singh
    • 4
  • G. Prakash
    • 4
  • T. R. Sharma
    • 5
  • Rajeev Rathour
    • 6
  • Mukund Variar
    • 7
  • S. K. Prashanthi
    • 8
  • M. Nagarajan
    • 9
  • K. K. Vinod
    • 9
  • Prolay K. Bhowmick
    • 1
  • N. K. Singh
    • 5
  • K. V. Prabhu
    • 1
  • B. D. Singh
    • 10
  • Ashok K. Singh
    • 1
  1. 1.Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Department of Bioscience and BiotechnologyBanasthali UniversityBanasthaliIndia
  3. 3.Division of Genetics and Plant Breeding, SKUASTSrinagarIndia
  4. 4.Division of Plant Pathology, IARINew DelhiIndia
  5. 5.National Research Centre on Plant BiotechnologyNew DelhiIndia
  6. 6.ACHBBCSKHPKVPalampurIndia
  7. 7.Central Rainfed Upland Rice Research Station- CRRIHazaribaghIndia
  8. 8.Agricultural Research StationDharwadIndia
  9. 9.Rice Breeding and Genetics Research Centre, IARIAduthuraiIndia
  10. 10.School of BiotechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations