Theoretical and Applied Genetics

, Volume 128, Issue 6, pp 1039–1047 | Cite as

High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus

  • Philipp E. Bayer
  • Pradeep Ruperao
  • Annaliese S. Mason
  • Jiri Stiller
  • Chon-Kit Kenneth Chan
  • Satomi Hayashi
  • Yan Long
  • Jinling Meng
  • Tim Sutton
  • Paul Visendi
  • Rajeev K. Varshney
  • Jacqueline Batley
  • David Edwards
Original Paper

Abstract

Key message

We characterise the distribution of crossover and non-crossover recombination inBrassica napusandCicer arietinumusing a low-coverage genotyping by sequencing pipeline SkimGBS.

Abstract

The growth of next-generation DNA sequencing technologies has led to a rapid increase in sequence-based genotyping for applications including diversity assessment, genome structure validation and gene–trait association. We have established a skim-based genotyping by sequencing method for crop plants and applied this approach to genotype-segregating populations of Brassica napus and Cicer arietinum. Comparison of progeny genotypes with those of the parental individuals allowed the identification of crossover and non-crossover (gene conversion) events. Our results identify the positions of recombination events with high resolution, permitting the mapping and frequency assessment of recombination in segregating populations.

Supplementary material

122_2015_2488_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1715 kb)

References

  1. Bus A, Hecht J, Huettel B, Reinhardt R, Stich B (2012) High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genom 13:281CrossRefGoogle Scholar
  2. Chalhoub B et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953. doi:10.1126/science.1253435 CrossRefPubMedGoogle Scholar
  3. Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775. doi:10.1038/nrg2193 CrossRefPubMedGoogle Scholar
  4. Cheng F, Mandakova T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa. Plant Cell 25:1541–1554. doi:10.1105/tpc.113.110486 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Drouaud J et al (2013) Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet 9:e1003922. doi:10.1371/journal.pgen.1003922 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2–9. doi:10.1111/j.1467-7652.2009.00459.x CrossRefPubMedGoogle Scholar
  7. Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11. doi:10.1007/s00122-012-1964-x CrossRefPubMedGoogle Scholar
  8. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi:10.1371/journal.pone.0019379 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Farkhari M, Lu Y, Shah T, Zhang S, Naghavi MR, Rong T, Xu Y (2011) Recombination frequency variation in maize as revealed by genomewide single-nucleotide polymorphisms. Plant Breed 130:533–539CrossRefGoogle Scholar
  10. Gaur R et al (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res 19:357–373. doi:10.1093/dnares/dss018 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84. doi:10.1038/nrg1970 CrossRefPubMedGoogle Scholar
  12. Hayward A, Mason A, Dalton-Morgan J, Zander M, Edwards D, Batley J (2012a) SNP discovery and applications in Brassica napus. J Plant Biotechnol 39:1–12CrossRefGoogle Scholar
  13. Hayward A et al (2012b) Second-generation sequencing for gene discovery in the Brassicaceae. Plant Biotechnol J 10:750–759. doi:10.1111/j.1467-7652.2012.00719.x CrossRefPubMedGoogle Scholar
  14. Helms C et al (1992) Closure of a genetic linkage map of human chromosome 7q with centromere and telomere polymorphisms. Genomics 14:1041–1054CrossRefPubMedGoogle Scholar
  15. Jain M et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729. doi:10.1111/tpj.12173 CrossRefPubMedGoogle Scholar
  16. Lai K et al (2014) Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat. Plant Biotechnol J 13:97–104. doi:10.1111/pbi.12240 CrossRefPubMedGoogle Scholar
  17. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967. doi:10.1093/bioinformatics/btp336 CrossRefPubMedGoogle Scholar
  18. Liu S et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930. doi:10.1038/ncomms4930 PubMedCentralPubMedGoogle Scholar
  19. Lorenc M et al (2012) Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology 1:370–382. doi:10.3390/biology1020370 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Mezard C, Vignard J, Drouaud J, Mercier R (2007) The road to crossovers: plants have their say. Trends Genet 23:91–99. doi:10.1016/j.tig.2006.12.007 CrossRefPubMedGoogle Scholar
  21. Parkin IA et al (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77. doi:10.1186/gb-2014-15-6-r77 CrossRefPubMedCentralPubMedGoogle Scholar
  22. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. doi:10.1371/journal.pone.0032253 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Qi J, Chen Y, Copenhaver GP, Ma H (2014) Detection of genomic variations and DNA polymorphisms and impact on analysis of meiotic recombination and genetic mapping. Proc Natl Acad Sci USA 111:10007–10012. doi:10.1073/pnas.1321897111 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Qiu D et al (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80. doi:10.1007/s00122-006-0411-2 CrossRefPubMedGoogle Scholar
  25. Roberts PA (1965) Difference in behaviour of Eu- and Hetero-chromatin—crossing-over. Nature 205:725–726. doi:10.1038/205725b0 CrossRefPubMedGoogle Scholar
  26. Ruperao P et al (2014) A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnol J 12:778–786. doi:10.1111/pbi.12182 CrossRefPubMedGoogle Scholar
  27. Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty PB, Li G (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114:1305–1317. doi:10.1007/s00122-006-0483-z CrossRefPubMedGoogle Scholar
  28. Varshney RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246. doi:10.1038/nbt.2491 CrossRefPubMedGoogle Scholar
  29. Wang X et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039. doi:10.1038/ng.919 CrossRefPubMedGoogle Scholar
  30. Wijnker E et al. (2013) The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. Elife 2: e01426 doi:10.7554/eLife.01426
  31. Yang S et al (2012) Great majority of recombination events in Arabidopsis are gene conversion events. Proc Natl Acad Sci USA 109:20992–20997. doi:10.1073/pnas.1211827110 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Yao H, Zhou Q, Li J, Smith H, Yandeau M, Nikolau BJ, Schnable PS (2002) Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci USA 99:6157–6162. doi:10.1073/pnas.082562199 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Philipp E. Bayer
    • 1
    • 2
    • 9
  • Pradeep Ruperao
    • 1
    • 2
    • 3
  • Annaliese S. Mason
    • 1
    • 4
  • Jiri Stiller
    • 5
  • Chon-Kit Kenneth Chan
    • 1
    • 2
  • Satomi Hayashi
    • 1
    • 4
  • Yan Long
    • 6
  • Jinling Meng
    • 6
  • Tim Sutton
    • 7
    • 8
  • Paul Visendi
    • 1
    • 2
  • Rajeev K. Varshney
    • 3
    • 9
  • Jacqueline Batley
    • 1
    • 4
    • 9
  • David Edwards
    • 1
    • 2
    • 9
  1. 1.School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
  2. 2.Australian Centre for Plant Functional Genomics, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
  3. 3.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia
  4. 4.Centre for Integrative Legume ResearchUniversity of QueenslandBrisbaneAustralia
  5. 5.Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Queensland Bioscience PrecinctBrisbaneAustralia
  6. 6.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
  7. 7.South Australian Research and Development InstituteAdelaideAustralia
  8. 8.Australian Centre for Plant Functional Genomics, School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia
  9. 9.School of Plant BiologyUniversity of Western AustraliaPerthAustralia

Personalised recommendations