Theoretical and Applied Genetics

, Volume 128, Issue 1, pp 93–106 | Cite as

QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.)

  • Amy L. Burton
  • James Johnson
  • Jillian Foerster
  • Meredith T. Hanlon
  • Shawn M. Kaeppler
  • Jonathan P. Lynch
  • Kathleen M. Brown
Original Paper


Key message

Root anatomical trait variation is described for three maize RIL populations. Six quantitative trait loci (QTL) are presented for anatomical traits: root cross-sectional area, % living cortical area, aerenchyma area, and stele area.


Root anatomy is directly related to plant performance, influencing resource acquisition and transport, the metabolic cost of growth, and the mechanical strength of the root system. Ten root anatomical traits were measured in greenhouse-grown plants from three recombinant inbred populations of maize [intermated B73 × Mo17 (IBM), Oh43 × W64a (OhW), and Ny821 × H99 (NyH)]. Traits included areas of cross section, stele, cortex, aerenchyma, and cortical cells, percentages of the cortex occupied by aerenchyma, and cortical cell file number. Significant phenotypic variation was observed for each of the traits, with maximum values typically seven to ten times greater than minimum values. Means and ranges were similar for the OhW and NyH populations for all traits, while the IBM population had lower mean values for the majority of traits, but a 50 % greater range of variation for aerenchyma area. A principal component analysis showed a similar trait structure for the three families, with clustering of area and count traits. Strong correlations were observed among area traits in the cortex, stele, and cross-section. The aerenchyma and percent living cortical area traits were independent of other traits. Six QTL were identified for four of the traits. The phenotypic variation explained by the QTL ranged from 4.7 % (root cross-sectional area, OhW population) to 12.0 % (percent living cortical area, IBM population). Genetic variation for root anatomical traits can be harnessed to increase abiotic stress tolerance and provide insights into mechanisms controlling phenotypic variation for root anatomy.


Quantitative Trait Locus Cortical Cell Root Trait Xylem Vessel Aerenchyma Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Lauren Gelesh, Johanna Mirenda, and Robert Snyder for technical assistance, and Anushree Sanyal for assistance with the QTL analysis. This work was supported by United States Department of Agriculture National Research Initiative [Grant # 207-35100-18365 to JPL and KMB].

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The research described in this paper complies with the current laws of the country in which it was performed.


  1. Bouranis DL, Chorianopoulou SN, Siyiannis VF et al (2003) Aerenchyma formation in roots of maize during sulphate starvation. Planta 217:382–391PubMedCrossRefGoogle Scholar
  2. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. doi: 10.1093/bioinformatics/btg112 PubMedCrossRefGoogle Scholar
  3. Burton AL, Lynch JP, Brown KM (2012a) Spatial distribution and phenotypic variation in root cortical aerenchyma of maize (Zea mays L.). Plant Soil 367:263–274. doi: 10.1007/s11104-012-1453-7 CrossRefGoogle Scholar
  4. Burton AL, Williams MS, Lynch JP, Brown KM (2012b) RootScan: software for high-throughput analysis of root anatomical traits. Plant Soil 357:189–203CrossRefGoogle Scholar
  5. Burton AL, Brown KM, Lynch JP (2013) Phenotypic diversity of root anatomical and architectural traits in Zea species. Crop Sci 53:1042–1055. doi: 10.2135/cropsci2012.07.0440 CrossRefGoogle Scholar
  6. Burton AL, Johnson J, Foerster JM et al (2014) QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet. doi: 10.1007/s00122-014-2353-4
  7. Chimungu J, Brown KM, Lynch JP (2014a) Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiol (in press)Google Scholar
  8. Chimungu JG, Maliro MF, Nalivata PC, et al (2014b) Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.). F Crop Res (in press)Google Scholar
  9. Chimungu JG, Brown K, Lynch J (2014c) Large root cortical cell size improves drought tolerance in maize (Zea mays L.). Plant Physiol. doi: 10.1104/pp.114.250449
  10. Coaker GL, Meulia T, Kabelka EA et al (2002) A QTL controlling stem morphology and vascular development in Lycopersicon esculentum X Lycopersicon hirsutum (Solanaceae) crosses is located on chromosome 2. Am J Bot 89:1859–1866PubMedCrossRefGoogle Scholar
  11. Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486. doi: 10.1104/pp.108.118117 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Crook MJ, Ennos AR, Sellers EK (1994) Structural development of the shoot and root systems of two winter wheat cultivars, Triticum aestivum L. J Exp Bot 45:857–863. doi: 10.1093/jxb/45.6.857 CrossRefGoogle Scholar
  13. Deacon JW, Lewis SJ (1982) Natural senescence of the root cortex of spring wheat in relation to susceptibility to common root rot (Cochliobolus sativus) and growth of a free-living nitrogen-fixing bacterium. Plant Soil 66:13–20. doi: 10.1007/BF02203397 CrossRefGoogle Scholar
  14. Drew MC, Jackson MB, Giffard S (1979) Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding Zea mays L. Planta 147:83–88PubMedCrossRefGoogle Scholar
  15. Fan MS, Zhu JM, Richards C et al (2003) Physiological roles for aerenchyma in phosphorus-stressed roots. Funct Plant Biol 30:493–506CrossRefGoogle Scholar
  16. Ferris R, Long L, Bunn SM et al (2002) Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar. Tree Physiol 22:633–640. doi: 10.1093/treephys/22.9.633 PubMedCrossRefGoogle Scholar
  17. Hai L, Guo H, Xiao S et al (2005) Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica 141:1–9. doi: 10.1007/s10681-005-4713-2 CrossRefGoogle Scholar
  18. Hao Z, Li X, Liu X et al (2009) Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174:165–177. doi: 10.1007/s10681-009-0091-5 CrossRefGoogle Scholar
  19. Jaramillo RE, Nord EA, Chimungu JG et al (2013) Root cortical burden influences drought tolerance in maize. Ann Bot 112:1–9. doi: 10.1093/aob/mct069 CrossRefGoogle Scholar
  20. Johnson SN, Hallett PD, Gillespie TL, Halpin C (2010) Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco. Physiol Entomol 35:186–191. doi: 10.1111/j.1365-3032.2010.00723.x CrossRefGoogle Scholar
  21. Jung JKH, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci. doi: 10.3389/fpls.2013.00186 Google Scholar
  22. Justin S, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495CrossRefGoogle Scholar
  23. Kondo M, Aguilar A, Abe J, Morita S (2000) Anatomy of nodal roots in tropical upland and lowland rice varieties. Plant Prod Sci 3:437–445CrossRefGoogle Scholar
  24. Konings H, Verschuren G (1980) Formation of aerenchyma in roots of Zea mays in aerated solutions, and its relation to nutrient supply. Physiol Plant 49:265–279CrossRefGoogle Scholar
  25. Lauri P-É, Gorza O, Cochard H et al (2011) Genetic determinism of anatomical and hydraulic traits within an apple progeny. Plant Cell Environ 34:1276–1290. doi: 10.1111/j.1365-3040.2011.02328.x PubMedCrossRefGoogle Scholar
  26. Lynch JP (2007) Rhizoeconomics: the roots of shoot growth limitations. HortScience 42:1107–1109Google Scholar
  27. Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049. doi: 10.1104/pp.111.175414 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357. doi: 10.1093/aob/mcs293 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lynch JP, Brown KM (2012) New roots for agriculture: exploiting the root phenome. Philos Trans R Soc London Ser B Biol Sci 367:1598–1604CrossRefGoogle Scholar
  30. Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56CrossRefGoogle Scholar
  31. Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize x teosinte “Zea nicaraguensis” advanced backcross population. Breed Sci 58:217–223CrossRefGoogle Scholar
  32. Mano Y, Muraki M, Fujimori M et al (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp huehuetenangensis) seedlings. Euphytica 142:33–42CrossRefGoogle Scholar
  33. Mano Y, Omori F, Takamizo T et al (2006) Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant Soil 281:269–279CrossRefGoogle Scholar
  34. Mano Y, Omori F, Takamizo T et al (2007) QTL mapping of root aerenchyma formation in seedlings of a maize x rare teosinte “Zea nicaraguensis” cross. Plant Soil 295:103–113CrossRefGoogle Scholar
  35. Mano Y, Omori F, Kindiger B, Takahashi H (2008) A linkage map of maize x teosinte Zea luxurians and identification of QTLs controlling root aerenchyma formation. Mol Breed 21:327–337. doi: 10.1007/s11032-007-9132-8 CrossRefGoogle Scholar
  36. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. p 889Google Scholar
  37. Niklas KJ (1994) Plant allometry: the scaling of form and process. University of Chicago Press, ChicagoGoogle Scholar
  38. R Development Core Team (2010) R: a language and environment for statistical computingGoogle Scholar
  39. Ranathunge K, Thomas RH, Fang X et al (2008) Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae. Phytopathology 98:1179–1189. doi: 10.1094/PHYTO-98-11-1179 PubMedCrossRefGoogle Scholar
  40. Richards RA, Passioura JB (1989) A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust J Agric Res 40:943–950. doi: 10.1071/AR9890943 CrossRefGoogle Scholar
  41. Ron M, Dorrity MW, de Lucas M et al (2013) Identification of novel loci regulating inter-specific variation in root morphology and cellular development in tomato. Plant Physiol 162:755–768. doi: 10.1104/pp.113.217802 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Saengwilai P, Nord EA, Chimungu JG, Brown KM, Lynch JP (2014) Root cortical aerenchyma enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L.). Plant Physiol 166(2):726–735. doi: 10.1104/pp.114.241711
  43. Semagn K, Beyene Y, Warburton ML et al (2013) Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genom 14:313. doi: 10.1186/1471-2164-14-313 CrossRefGoogle Scholar
  44. Sharma S, Demason D, Ehdaie B et al (2010) Dosage effect of the short arm of chromosome 1 of rye on root morphology and anatomy in bread wheat. J Exp Bot 61:2623–2633. doi: 10.1093/jxb/erq097 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sieber T, Grunig C (2013) Fungal root endophytes. Plant Roots Hidden Half, 4th edn. CRC Press, Boca Raton, pp 38-1–38-49Google Scholar
  46. Striker GG, Insausti P, Grimoldi AA, Vega AS (2007) Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant Cell Environ 30:580–589PubMedCrossRefGoogle Scholar
  47. Stringfield G (1959) Maize inbred lines of Ohio. Ohio Agric Exp Stn Bull. p 831Google Scholar
  48. Thomas R, Fang X, Ranathunge K et al (2007) Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiol 144:299–311. doi: 10.1104/pp.106.091090 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Tombesi S, Johnson RS, Day KR, DeJong TM (2010) Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks. Ann Bot 105:327–331. doi: 10.1093/aob/mcp281 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Trachsel S, Kaeppler S, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87. doi: 10.1007/s11104-010-0623-8 CrossRefGoogle Scholar
  51. Troyer AF (2004) Persistent and popular germplasm in seventy centuries of corn evolution. In: Smith CW, Betran J, Runge ECA (eds) Corn: Orig. Hist. Technol. Prod. Wiley, Hoboken, pp 133–232Google Scholar
  52. Tuberosa R, Salvi S, Sanguineti M et al (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant Soil 255:35–54CrossRefGoogle Scholar
  53. Tuberosa R, Salvi S, Giuliani S et al (2011) Genomics of root architecture and functions in maize. In: Varshney RK, Costa de Oliveira A (eds) Root Genomics. Springer, Berlin, pp 179–204CrossRefGoogle Scholar
  54. Uga Y, Okuno K, Yano M (2008) QTLs underlying natural variation in stele and xylem structures of rice root. Breed Sci 58:7–14CrossRefGoogle Scholar
  55. Uga Y, Ebana K, Abe J et al (2009) Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breed Sci 59:87–93CrossRefGoogle Scholar
  56. Uga Y, Okuno K, Yano M (2010) Fine mapping of Sta1, a quantitative trait locus determining stele transversal area, on rice chromosome 9. Mol Breed 26:533–538. doi: 10.1007/s11032-010-9450-0 CrossRefGoogle Scholar
  57. Valenzuela-Estrada LR, Bryla DR, Hoashi-Erhardt WK et al (2012) Root traits associated with Phytophthora root rot resistance in red raspberry. Acta Hortic 946:283–287Google Scholar
  58. Wang S, Basten CJ, Zeng Z-B (2006) Windows QTL Cartographer 2–5Google Scholar
  59. Wasson P, Richards R, Chatrath R et al (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498. doi: 10.1093/jxb/ers111 PubMedCrossRefGoogle Scholar
  60. Wenzel CL, McCully ME (1991) Early senescence of cortical cells in the roots of cereals. How good is the evidence? Am J Bot 78:1528–1541CrossRefGoogle Scholar
  61. York LM, Nord EA, Lynch JP (2013) Integration of root phenes for soil resource acquisition Integration of root phenes for soil resource acquisition. Front Plant Sci 4. doi:  10.3389/fpls.2013.00355 (article 355)
  62. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedCentralPubMedGoogle Scholar
  63. Zhu JM, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33:740–749. doi: 10.1111/j.1365-3040.2009.02099.x PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amy L. Burton
    • 1
  • James Johnson
    • 2
  • Jillian Foerster
    • 2
  • Meredith T. Hanlon
    • 1
  • Shawn M. Kaeppler
    • 2
  • Jonathan P. Lynch
    • 1
  • Kathleen M. Brown
    • 1
  1. 1.Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of AgronomyUniversity of WisconsinMadisonUSA

Personalised recommendations