Theoretical and Applied Genetics

, Volume 127, Issue 11, pp 2349–2358 | Cite as

Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34

  • X. L. Zhou
  • D. J. Han
  • X. M. Chen
  • H. L. Gou
  • S. J. Guo
  • L. Rong
  • Q. L. Wang
  • L. L. Huang
  • Z. S. Kang
Original Paper

Abstract

Key message

We report a new stripe rust resistance gene on chromosome 7AS in wheat and molecular markers useful for transferring it to other wheat genotypes.

Abstract

Several new races of the stripe rust pathogen have established throughout the wheat growing regions of China in recent years. These new races are virulent to most of the designated seedling resistance genes limiting the resistance sources. It is necessary to identify new genes for diversification and for pyramiding different resistance genes in order to achieve more durable resistance. We report here the identification of a new resistance gene, designated as Yr61, in Chinese wheat cultivar Pindong 34. A mapping population of 208 F2 plants and 128 derived F2:3 lines in a cross between Mingxian 169 and Pindong 34 was evaluated for seedling stripe rust response. A genetic map consisting of eight resistance gene analog polymorphism (RGAP), two sequence-tagged site (STS) and four simple sequence repeat (SSR) markers was constructed. Yr61 was located on the short arm of chromosome 7A and flanked by RGAP markers Xwgp5467 and Xwgp5765 about 1.9 and 3.9 cM in distance, which were successfully converted into STS markers STS5467 and STS5765b, respectively. The flanking STS markers could be used for marker-assisted selection of Yr61 in breeding programs.

Supplementary material

122_2014_2381_MOESM1_ESM.pptx (2 mb)
Supplementary material 1 (PPTX 2091 kb)

References

  1. Basnet BR, Singh RP, Ibrahim AMH, Herrera-Foessel SA, Huerta-Espino J, Lan C, Rudd JC (2013) Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol Breeding. doi:10.1007/s11032-013-9957-2 Google Scholar
  2. Chen XM (2005) Epidemiology and control of stripe rust (Puccinia striiformis f. sp tritici) on wheat. Can J Plant Pathol 27:314–337CrossRefGoogle Scholar
  3. Chen XM (2007) Challenges and solutions for stripe rust control in the United States. Aust J Agr Res 58:648–655CrossRefGoogle Scholar
  4. Chen XM (2013) High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 4:608–627CrossRefGoogle Scholar
  5. Chen XM, Line RF, Leung H (1998) Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet 97:345–355CrossRefGoogle Scholar
  6. Chen XM, Moore M, Milus EA, Long DL, Line RF, Marshall D, Jackson L (2002) Wheat stripe rust epidemics and races of Puccinia striiformis f. sp tritici in the United States in 2000. Plant Dis 86:39–46CrossRefGoogle Scholar
  7. Chen WQ, Wu LR, Liu TG, Xu SC, Jin SL, Peng YL, Wang BT (2009) Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis 93:1093–1101CrossRefGoogle Scholar
  8. Cheng P, Chen XM (2010) Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theor Appl Genet 121:195–204PubMedCrossRefGoogle Scholar
  9. Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 99:968–973PubMedCrossRefGoogle Scholar
  10. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3:1452–1456PubMedCrossRefGoogle Scholar
  11. Li ZQ, Zeng SM (2000) Wheat rusts in China. China Agricultural Press, BeijingGoogle Scholar
  12. Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118PubMedCrossRefGoogle Scholar
  13. Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. US Dep Agric Tech Bull 1788, Washington, DCGoogle Scholar
  14. McIntosh RA, amazaki YY, Dubcovsky J, Rogers WJ, Morris C, Somers DJ, Appels R, Devos KM (2013) MacGene 2012: catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp. Accessed 4 Aug 2013
  15. Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242PubMedCrossRefGoogle Scholar
  16. Qayoum A, Line RF (1985) High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75:1121–1125CrossRefGoogle Scholar
  17. Ren RS, Wang MN, Chen XM, Zhang ZJ (2012a) Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet 125:847–857PubMedCrossRefGoogle Scholar
  18. Ren Y, Li ZF, He ZH, Wu L, Bai B, Lan CX, Wang CF, Zhou G, Zhu HZ, Xia XC (2012b) QTL mapping of adult-plant resistances to stripe rust and leaf rust in a Chinese wheat cultivar Bainong 64. Theor Appl Genet 125:1253–1262PubMedCrossRefGoogle Scholar
  19. Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294PubMedCrossRefGoogle Scholar
  20. Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126:2427–2449PubMedCrossRefPubMedCentralGoogle Scholar
  21. Sears ER (1966) Nullisomic–tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulations and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45CrossRefGoogle Scholar
  22. Sharma-Poudyal D, Chen XM, Wan AM, Zhan GM, Kang ZS, Cao SQ, Jin SL, Morgounov A, Akin B, Mert Z, Shah SJA, Bux H, Ashraf M, Sharma RC, Madariaga R, Puri KD, Wellings C, Xi KQ, Wanyera R, Manninger K, Ganzález MI, Koyda M, Sanin S, Patzek LJ (2013) Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis 97:379–386CrossRefGoogle Scholar
  23. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  24. Song WN, Ko L, Henry R (1994) Polymorphisms in α-amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction. Theor Appl Genet 89:509–512Google Scholar
  25. Stubbs RW (1985) Stripe rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol II. Academic Press, New York, pp 61–101Google Scholar
  26. Vazquez MD, Peterson CJ, Riera-Lizarazu O, Chen XM, Heesacker A, Ammar K, Crossa J, Mundt CC (2012) Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar Stephens in multi-environment trials. Theor Appl Genet 124:1–11CrossRefGoogle Scholar
  27. Wan AM, Chen XM, He ZH (2007) Wheat stripe rust in China. Aust J Agric Res 58:605–619CrossRefGoogle Scholar
  28. Wang JK (2009) Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin 35:239–245CrossRefGoogle Scholar
  29. Wellings CR (2007) Puccinia striiformis in Australia: a review of the incursion, evolution and adaptation of stripe rust in the period 1979–2005. Aust J Agric Res 58:567–575CrossRefGoogle Scholar
  30. Xu LS, Wang MN, Cheng P, Kang ZS, Hulbert SH, Chen XM (2013) Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor Appl Genet 126:523–533PubMedCrossRefGoogle Scholar
  31. Zeng QD, Han DJ, Wang QL, Yuan FP, Wu JH, Zhang L, Wang XJ, Huang LL, Chen XM, Kang ZS (2014) Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica 196:271–284CrossRefGoogle Scholar
  32. Zhou XL, Wang WL, Wang LL, Hou DY, Jing JX, Wang Y, Xu ZQ, Yao Q, Yin JL, Ma DF (2011) Genetics and molecular mapping of genes for high-temperature resistance to stripe rust in wheat cultivar Xiaoyan 54. Theor Appl Genet 123:431–438PubMedCrossRefGoogle Scholar
  33. Zhou XL, Wang MN, Chen XM, Lu Y, Kang ZS, Jing JX (2014) Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theor Appl Genet. doi:10.1007/s00122-014-2269-z Google Scholar
  34. Zwart RS, Thompson JP, Milgate AW, Bansal UK, Williamson PM, Raman H, Bariana HS (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed 26:107–124CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • X. L. Zhou
    • 1
  • D. J. Han
    • 3
  • X. M. Chen
    • 4
  • H. L. Gou
    • 3
  • S. J. Guo
    • 3
  • L. Rong
    • 3
  • Q. L. Wang
    • 2
  • L. L. Huang
    • 2
  • Z. S. Kang
    • 2
  1. 1.State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
  2. 2.State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
  3. 3.State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
  4. 4.US Department of Agriculture, Agricultural Research Service (USDA-ARS), Wheat Genetics, Quality, Physiology and Disease Research Unit, and Department of Plant PathologyWashington State UniversityPullmanUSA

Personalised recommendations