Theoretical and Applied Genetics

, Volume 127, Issue 9, pp 2051–2064 | Cite as

High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets

  • Allan F. Brown
  • Gad G. Yousef
  • Kranthi K. Chebrolu
  • Robert W. Byrd
  • Koyt W. Everhart
  • Aswathy Thomas
  • Robert W. Reid
  • Isobel A. P. Parkin
  • Andrew G. Sharpe
  • Rebekah Oliver
  • Ivette Guzman
  • Eric W. Jackson
Original Paper

Abstract

Key message

A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae.

Abstract

A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiment conducted complies with the laws of the United States and Canada.

References

  1. Arias T, Beilstein MA, Tang M, McKain MR, Pires JC (2014) Diversification times among Brassica (Brassicaceae) crops suggest hybrid formation after 20 million years of divergence. Am J Bot 101:86–91PubMedCrossRefGoogle Scholar
  2. Ayele M, Haas BJ, Kumar N, Wu H, Xiao Y, Van Aken S, Utterback TR, Wortman JR, White OR, Town CD (2005) Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res 15:487–495PubMedCentralPubMedCrossRefGoogle Scholar
  3. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros CF, Sadowski J (2003) Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol Genet Genomics 268:656–665PubMedGoogle Scholar
  4. Bohuon EJR, Keith DJ, Parkin IAP, Sharpe AG, Lydiate DJ (1996) Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theor Appl Genet 93:833–839PubMedCrossRefGoogle Scholar
  5. Brown AF, Yousef GG, Jeffery EH, Klein PB, Wallig MA, Kushad MM, Juvik JA (2002) Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J Am Soc Hortic Sci 127:807Google Scholar
  6. Brown AF, Jeffery EH, Juvik JA (2007) A polymerase chain reaction-based linkage map of broccoli and identification of quantitative trait loci associated with harvest date and head weight. J Am Soc Hortic Sci 132:507–513Google Scholar
  7. Camargo LEA, Savides L, Jung G, Nienhuis J, Osborn TC (1997) Location of the self-incompatibility locus in an RFLP and RAPD map of Brassica oleracea. J Hered 88:57PubMedCrossRefGoogle Scholar
  8. Cárdenas P, Gajardo H, Huebert T, Parkin I, Iniguez-Luy F, Federico M (2012) Retention of triplicated phytoene synthase (PSY) genes in Brassica napus L. and its diploid progenitors during the evolution of the Brassiceae. Theor Appl Genet 124:1215–1228PubMedCrossRefGoogle Scholar
  9. Cazzonelli IC, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274PubMedCrossRefGoogle Scholar
  10. de Sá MC, Rodriguez-Amaya DB (2004) Optimization of HPLC quantification of carotenoids in cooked green vegetables—comparison of analytical and calculated data. J Food Compos Anal 17:37–51CrossRefGoogle Scholar
  11. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738PubMedCrossRefGoogle Scholar
  12. Eberhardt VM, Kobira K, Keck AS, Juvik AJ, Jeffery EH (2005) Correlation analyses of phytochemical composition, chemical, and cellular measures of antioxidant activity of broccoli (Brassica oleracea L. Var. italica). J Agric Food Chem 53:7421–7431PubMedCrossRefGoogle Scholar
  13. Farnham MW, Kopsell DA (2009) Importance of genotype on carotenoid and chlorophyll levels in broccoli heads. HortScience 44:1248–1253Google Scholar
  14. Gao M, Li G, Yang B, Qui D, Farnham M, Quiros C (2007) High-density Brassica oleracea linkage map: identification of useful new linkages. Theor Appl Genet 115:277–287PubMedCrossRefGoogle Scholar
  15. García-Plazaola JI, Matsubara S, Osmond CB (2007) The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Funct Plant Biol 34:759–773CrossRefGoogle Scholar
  16. Guzman I, Yousef GG, Brown AF (2012) Simultaneous extraction and quantitation of carotenoids, chlorophylls, and tocopherols in Brassica vegetables. J Agric Food Chem 60:7238–7244PubMedCrossRefGoogle Scholar
  17. Heinonen MI, Ollilainen V, Linkola EK, Varo PT, Koivistoinen PE (1989) Carotenoids in Finnish foods: vegetables, fruits, and berries. J Agric Food Chem 10:655–659CrossRefGoogle Scholar
  18. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218PubMedCrossRefGoogle Scholar
  19. Holden JM, Eldridge AL, Beecher GR, Buzzard IM, Bhagwat S, Davis CS, Douglass LW, Gebhardt S, Haytowitz D, Schakel S (1999) Carotenoid content of U.S. foods: an update of the database. J Food Compos Anal 12:169–196CrossRefGoogle Scholar
  20. Hu J, Sadowski J, Osborn TC, Landry BS, Quiros CF (1998) Linkage group alignment from four independent Brassica oleracea RFLP maps. Genome 41:226–235CrossRefGoogle Scholar
  21. Iniguez-Luy F, Lukens L, Farnham M, Amasino R, Osborn T (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet 120:31–43PubMedCrossRefGoogle Scholar
  22. Kianian SF, Quiros CF (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554PubMedGoogle Scholar
  23. Kidwell KK, Osborn TC (1992) Simple plant DNA isolation procedures. In: Beckman JS, Osborn TC (eds) Plant genomes: methods for genetic and physical mapping, pp 1–13 Kluwer Academic, NetherlandsGoogle Scholar
  24. Kurilich AC, Tsau GJ, Brown AF, Howard L, Klein PB, Jeffery EH, Kushad M, Wallig MA, Juvik JA (1999) Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J Agric Food Chem 47:1576–1581PubMedCrossRefGoogle Scholar
  25. Kushad M, Brown AF, Kurilich A, Juvik JA, Klein PP, Wallig M, Jeffery E (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548PubMedCrossRefGoogle Scholar
  26. Lan TH, Paterson AH (2000) Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea. Genetics 155:1927PubMedCentralPubMedGoogle Scholar
  27. Landry BS, Hubert N, Crete R, Chang MS, Lincoln SE, Etoh T (1992) A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome 35:409–420CrossRefGoogle Scholar
  28. Lefsrud MG, Kopsell DA, Kopsell DE, Randle WM (2006) Kale carotenoids Are unaffected by, whereas biomass production, elemental concentrations, and selenium accumulation respond to, changes in selenium fertility. J Agric Food Chem 54:1764–1771PubMedCrossRefGoogle Scholar
  29. Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121PubMedGoogle Scholar
  30. Müller H (1997) Determination of the carotenoid content in selected vegetables and fruit by HPLC and photodiode array detection. Z Lebensm Unters F A 204:88–94CrossRefGoogle Scholar
  31. Murkovic M, Gams K, Draxl S, Pfannhauser W (2000) Development of an Austrian Carotenoid Database. J Food Compos Anal 13:435–440CrossRefGoogle Scholar
  32. Nagaoka T, Doullah MAU, Matsumoto S, Kawasaki S, Ishikawa T, Hori H, Okazaki K (2010) Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theor Appl Genet 120:1335–1346PubMedCrossRefGoogle Scholar
  33. Ooijin VJW (2009) MapQTL® 6. Kyazma, NetherlandsGoogle Scholar
  34. Parkin I, Magrath R, Keith D, Sharpe A, Mithen R, Lydiate D (1994) Genetics of aliphatic glucosinolates. II. Hydroxylation of alkenyl glucosinolates in Brassica napus. Heredity 72:594–598CrossRefGoogle Scholar
  35. Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781PubMedCentralPubMedCrossRefGoogle Scholar
  36. Pink D, Bailey L, McClement S, Hand P, Mathas E, Buchanan WV, Astley D, King G, Teakle G (2008) Double haploids, markers and QTL analysis in vegetable brassicas. Euphytica 164:509–514CrossRefGoogle Scholar
  37. Qiu D, Gao M, Li G, Quiros C (2009) Comparative sequence analysis for Brassica oleracea with similar sequences in B. rapa and Arabidopsis thaliana. Plant Cell Rep 28:649–661PubMedCrossRefGoogle Scholar
  38. Ramsay LD, Jennings DE, Kearsey MJ, Marshall DF, Bohuon EJ, Arthur AE, Lydiate DJ (1996) The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome 39:558–567PubMedCrossRefGoogle Scholar
  39. Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in arabidopsis: a colorful pathway. The Arabidopsis Book 10:e0158Google Scholar
  40. Schranz ME, Song BH, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10:168–175PubMedCrossRefGoogle Scholar
  41. Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100:75–81CrossRefGoogle Scholar
  42. Slater G, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31PubMedCentralPubMedCrossRefGoogle Scholar
  43. Slocum MK, Figdore SS, Kennard WC, Suzuki JY, Osborn TC (1990) Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theor Appl Genet 80:57–64PubMedGoogle Scholar
  44. Sujak A, Gabrielska J, Grudziński W, Borc R, Mazurek P, Gruszecki WI (1999) Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects. Arch Biochem Biophys 371:301–307PubMedCrossRefGoogle Scholar
  45. Thompson MJ, Thompson HJ (2009) Biomedical agriculture: a systematic approach to food crop improvement for chronic disease prevention. Adv Agron 102:1–54CrossRefGoogle Scholar
  46. Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359PubMedCentralPubMedCrossRefGoogle Scholar
  47. Zhang D, Hamauzu Y (2004) Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem 88:503–509CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Allan F. Brown
    • 1
  • Gad G. Yousef
    • 1
  • Kranthi K. Chebrolu
    • 1
  • Robert W. Byrd
    • 1
  • Koyt W. Everhart
    • 1
  • Aswathy Thomas
    • 1
  • Robert W. Reid
    • 5
  • Isobel A. P. Parkin
    • 2
  • Andrew G. Sharpe
    • 3
  • Rebekah Oliver
    • 4
  • Ivette Guzman
    • 1
  • Eric W. Jackson
    • 4
  1. 1.Department of Horticultural Science, Plants for Human Health InstituteNorth Carolina State UniversityKannapolisUSA
  2. 2.Agriculture and Agri-Food CanadaSaskatoonCanada
  3. 3.National Research Council CanadaSaskatoonCanada
  4. 4.General Mills Crop BiosciencesKannapolisUSA
  5. 5.UNC Charlotte Bioinformatics Services DivisionUniversity of North Carolina-CharlotteKannapolisUSA

Personalised recommendations