Theoretical and Applied Genetics

, Volume 127, Issue 8, pp 1783–1794 | Cite as

Next-generation sequencing based genotyping, cytometry and phenotyping for understanding diversity and evolution of guinea yams

  • Gezahegn Girma
  • Katie E. Hyma
  • Robert Asiedu
  • Sharon E. Mitchell
  • Melaku Gedil
  • Charles Spillane
Original Paper


Key message

Genotyping by sequencing (GBS) is used to understand the origin and domestication of guinea yams, including the contribution of wild relatives and polyploidy events to the cultivated guinea yams.


Patterns of genetic diversity within and between two cultivated guinea yams (Dioscorea rotundata and D. cayenensis) and five wild relatives (D. praehensilis, D. mangenotiana, D. abyssinica, D. togoensis and D. burkilliana) were investigated using next-generation sequencing (genotyping by sequencing, GBS). Additionally, the two cultivated species were assessed for intra-specific morphological and ploidy variation. In guinea yams, ploidy level is correlated with species identity. Using flow cytometry a single ploidy level was inferred across D. cayenensis (3x, N = 21), D. praehensilis (2x, N = 7), and D. mangenotiana (3x, N = 5) accessions, whereas both diploid and triploid (or aneuploid) accessions were present in D. rotundata (N = 11 and N = 32, respectively). Multi-dimensional scaling and maximum parsimony analyses of 2,215 SNPs revealed that wild guinea yam populations form discrete genetic groupings according to species. D. togoensis and D. burkilliana were most distant from the two cultivated yam species, whereas D. abyssinica, D. mangenotiana, and D. praehensilis were closest to cultivated yams. In contrast, cultivated species were genetically less clearly defined at the intra-specific level. While D. cayenensis formed a single genetic group, D. rotundata comprised three separate groups consisting of; (1) a set of diploid individuals genetically similar to D. praehensilis, (2) a set of diploid individuals genetically similar to D. cayenensis, and (3) a set of triploid individuals. The current study demonstrates the utility of GBS for assessing yam genomic diversity. Combined with morphological and biological data, GBS provides a powerful tool for testing hypotheses regarding the evolution, domestication and breeding of guinea yams.


Switchgrass Ploidy Level Wild Relative Single Nucleotide Polymorphism Locus Single Nucleotide Polymorphism Calling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The CGIAR Research Program on Roots, Tubers and Bananas funded this research. Prof. Alexander Dansi provided materials from Benin. Prof. Michael Abberton and Dr. Marc Deletre reviewed the manuscript. GG acknowledges support from the Netherlands Ministry of Foreign Affairs, and PhD fee waiver from the National University of Ireland Galway. CS acknowledges support from Science Foundation Ireland (SFI).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2014_2339_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 21 kb)
122_2014_2339_MOESM2_ESM.pdf (539 kb)
Supplementary material 2 (PDF 538 kb)
122_2014_2339_MOESM3_ESM.pdf (264 kb)
Supplementary material 3 (PDF 263 kb)
122_2014_2339_MOESM4_ESM.docx (89 kb)
Supplementary material 4 (DOCX 89 kb)


  1. Aidoo R, Nimoh F, Bakang J-EA, Ohene-Yankyera K, Fialor SC, Abaidoo RC (2011) Economics of small-scale seed yam production in Ghana: implications for commercialisation. J Sustain Dev Africa 13:65–78CrossRefGoogle Scholar
  2. Akoroda MO (1985) Pollination management for controlled hybridization of white yam. Sci Hortic 25:201–209CrossRefGoogle Scholar
  3. Amusa N, Adegbite A, Mohammed S, Baiyewu R (2003) Yam diseases and its management in Nigeria. Afr J Biotechnol 2:497–502Google Scholar
  4. Arnau G, Nemorin A, Maledon E, Abraham K (2009) Revision of ploidy status of Dioscorea alata L. (Dioscoreaceae) by cytogenetic and microsatellite segregation analysis. Theor Appl Genet 118:1239–1249PubMedCrossRefGoogle Scholar
  5. Babil PK, Irie K, Shiwachi H, Tun Y, Toyohara H, Fujimaki H (2010) Ploidy variation and their effects on Leaf and stoma traits of water yam (Dioscorea alata L.) collected in Myanmar. Trop Agric Dev 54:132–139Google Scholar
  6. Bahuchet S, McKey D, de Garine I (1991) Wild yams revisited: is independence from agriculture possible for rain forest hunter-gatherers? Hum Ecol 19:213–243CrossRefGoogle Scholar
  7. Baimey H, Coyne D, Labuschagne N (2006) Effect of fertilizer application on yam nematode (Scutellonema bradys) multiplication and consequent damage to yam (Dioscorea spp.) under field and storage conditions in Benin. Int J Pest Manag 52:63–70CrossRefGoogle Scholar
  8. Bouckaert RR (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372–1373PubMedCrossRefGoogle Scholar
  9. Bousalem M, Arnau G, Hochu I, Arnolin R, Viader V, Santoni S, David J (2006) Microsatellite segregation analysis and cytogenetic evidence for tetrasomic inheritance in the American yam Dioscorea trifida and a new basic chromosome number in the Dioscoreae. Theor Appl Genet 113:439–451PubMedCrossRefGoogle Scholar
  10. Burkill IH (1960) The organography and the evolution of Dioscoreaceae, the family of the yams. J Linn Soc Lond Bot 56:319–412CrossRefGoogle Scholar
  11. Cornet D, Deu M, Baco M, Agbangla A, Duval M, Noyer J (2010) Impact of farmer selection on yam genetic diversity. Conserv Genet 11:2255–2265CrossRefGoogle Scholar
  12. Coursey DG (1967) Yams. An account of the nature, origins, cultivation and utilisation of the useful members of the Dioscoreaceae. Longmans, Green and Co. Ltd, LondonGoogle Scholar
  13. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Group GPA (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dansi A, Mignouna H, Zoundjihekpon J, Sangare A, Asiedu R, Quin F (1999) Morphological diversity, cultivar groups and possible descent in the cultivated yams (Dioscorea cayenensis/D. rotundata) complex in Benin Republic. Genet Resour Crop Evol 46:371–388CrossRefGoogle Scholar
  15. Dansi A, Mignouna HD, Pillay M, Zok S (2001) Ploidy variation in the cultivated yams (Dioscorea cayenensisDioscorea rotundata complex) from Cameroon as determined by flow cytometry. Euphytica 119:301–307CrossRefGoogle Scholar
  16. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483PubMedCentralPubMedCrossRefGoogle Scholar
  17. Development Core Team R (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, AustriaGoogle Scholar
  18. Dumet D, Ogunsola D (2008) Regeneration guidelines: yams, crop specific regeneration guidelines. In: Dulloo ME, Thormann I, Jorge MA, Hanson J (eds) CGIAR System-wide Genetic Resource Programme, RomeGoogle Scholar
  19. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379PubMedCentralPubMedCrossRefGoogle Scholar
  20. Emshwiller E (2002) Ploidy levels among species in the ‘Oxalis tuberosa Alliance’ as inferred by flow cytometry. Ann Bot 89:741–753PubMedCrossRefGoogle Scholar
  21. FAOSTAT (2013) Statistical data base. FAO, RomeGoogle Scholar
  22. Gamiette F, Bakry F, Ano G (1999) Ploidy determination of some yam species (Dioscorea spp.) by flow cytometry and conventional chromosomes counting. Genet Resour Crop Evol 46:19–27CrossRefGoogle Scholar
  23. Govaerts R, Wilkin P, Saunders RMK (2007) World checklist of Dioscoreales. Yams and their allies. The Board of Trustees of the Royal Botanic Gardens, Kew, London, pp 1–65Google Scholar
  24. Hamon P, Toure B (1990) Characterization of traditional yam varieties belonging to the Dioscorea cayenensisrotundata complex by their isozymic patterns. Euphytica 46:101–107CrossRefGoogle Scholar
  25. Hamon P, Brizard J-P, Zoundjihékpon J, Duperray C, Borgel A (1992) Etude des index d’ ADN de huit ignames (Dioscorea sp.) par cytométrie en flux. Can J Bot 70:996–1000CrossRefGoogle Scholar
  26. IPGRI/IITA (1997) Descriptors for yam (Dioscorea spp.). International Institute of Tropical Agriculture, Ibadan, Nigeria/International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  27. Junier T, Zdobnov EM (2010) The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics 26:1669–1670PubMedCentralPubMedCrossRefGoogle Scholar
  28. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9:559CrossRefGoogle Scholar
  29. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18Google Scholar
  30. Lebot V (2009) Tropical root and tuber crops: cassava, sweet potato, yams and aroids. CABI Publishers, WallingfordGoogle Scholar
  31. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215PubMedCentralPubMedCrossRefGoogle Scholar
  32. Mengesha W, Demissew S, Fay M, Smith R, Nordal I, Wilkin P (2013) Genetic diversity and population structure of Guinea yams and their wild relatives in South and South West Ethiopia as revealed by microsatellite markers. Genet Resour Crop Evol 60:529–541CrossRefGoogle Scholar
  33. Mignouna HD, Dansi A, Zok S (2002) Morphological and isozymic diversity of the cultivated yams (Dioscorea cayenensis/Dioscorea rotundata complex) of Cameroon. Genet Resour Crop Evol 49:21–29CrossRefGoogle Scholar
  34. Mignouna HD, Abang MM, Fagbemi SA (2003) A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata) germplasm characterization. Ann Appl Biol 142:269–276CrossRefGoogle Scholar
  35. Mignouna HD, Abang MM, Asiedu R (2007) Yams. In: Kole C (ed) Genome mapping and molecular breeding: pulses, sugar and tuber crops. Springer, Berlin, Heidelberg, pp 271–296Google Scholar
  36. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458PubMedCentralPubMedCrossRefGoogle Scholar
  37. Nemorin A, Abraham K, David J, Arnau G (2012) Inheritance pattern of tetraploid Dioscorea alata and evidence of double reduction using microsatellite marker segregation analysis. Mol Breed 30:1657–1667CrossRefGoogle Scholar
  38. Obidiegwu J, Loureiro J, Ene-Obong E, Rodriguez E, Kolesnikova-Allen M, Santos C, Mouneke C, Asiedu R (2009) Ploidy level studies on the Dioscorea cayenensis/Dioscore rotundata complex core set. Euphytica 169:319–326CrossRefGoogle Scholar
  39. Onyilagha JC, Lowe J (1986) Studies on the relationship of Dioscorea cayenensis and Dioscorea rotundata cultivars. Euphytica 35:733–739CrossRefGoogle Scholar
  40. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Gen 5:92–102CrossRefGoogle Scholar
  41. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012a) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Gen 5:103–113CrossRefGoogle Scholar
  42. Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012b) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253PubMedCentralPubMedCrossRefGoogle Scholar
  43. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCentralPubMedCrossRefGoogle Scholar
  44. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria.
  45. Ramser J, Weising K, Terauchi R, Kahl G, Lopez-Peralta C, Terhalle W (1997) Molecular marker based taxonomy and phylogeny of Guinea yam (Dioscorea rotundataD. cayenensis). Genome/National Res Council Canada = Genome/Conseil national de recherches Canada 40:903–915CrossRefGoogle Scholar
  46. Sato H (2001) The potential of edible wild yams and yam-like plants as a staple food resource in the African tropical rain forest. Afr Study Monogr Suppl Issue 26:123–134Google Scholar
  47. Scarcelli N, Dainou O, Agbangla C, Tostain S, Pham JL (2005) Segregation patterns of isozyme loci and microsatellite markers show the diploidy of African yam Dioscorea rotundata (2n = 40). Theor Appl Genet 111:226–232PubMedCrossRefGoogle Scholar
  48. Scarcelli N, Tostain S, Mariac C, Agbangla C, Da O, Berthaud J, Pham JL (2006a) Genetic nature of yams (Dioscorea sp.) domesticated by farmers in Benin (West Africa). Genet Resour Crop Evol 53:121–130CrossRefGoogle Scholar
  49. Scarcelli N, Tostain S, Vigouroux Y, Agbangla C, DaÏNou O, Pham JL (2006b) Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop. The case of yam in Benin. Mol Ecol 15:2421–2431PubMedCrossRefGoogle Scholar
  50. Scarcelli N, Couderc M, Baco M, Egah J, Vigouroux Y (2013) Clonal diversity and estimation of relative clone age: application to agrobiodiversity of yam (Dioscorea rotundata). BMC Plant Biol 13:178PubMedCentralPubMedCrossRefGoogle Scholar
  51. Spillane C, Gepts P (2001) Evolutionary and genetic perspectives on the dynamics of crop genepools. In: Cooper D, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CABI, Wallingford, pp 25–70CrossRefGoogle Scholar
  52. Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theoret Appl Genet 126:2699–2716CrossRefGoogle Scholar
  53. Tamiru M, Natsume S, Takagi H, Babil PK, Yamanaka S, Lopez-Montes A, Gedil M, Bhattacharjee R, Takagi H, Asiedu R, Terauchi R (2013) Whole genome sequencing of Guinea yam (Dioscorea rotundata). In: First global conference on yam. International Institute of Tropical Agriculture (IITA), Accra, GhanaGoogle Scholar
  54. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  55. Terauchi R, Chikaleke VA, Thottappilly G, Hahn SK (1992) Origin and phylogeny of Guinea yams as revealed by RFLP analysis of chloroplast DNA and nuclear ribosomal DNA. Theoret Appl Genet 83:743–751Google Scholar
  56. Tortoe C, Johnson P-T, Abbey L, Baidoo E, Anang D, Acquaah SG, Saka E (2012) Sensory properties of pre-treated blast-chilled (Dioscorea rotundata) as a convenience food product. Afr J Food Sci Technol 3:59–65Google Scholar
  57. Zamir D (2013) Where have all the crop phenotypes gone? PLoS Biol 11:e1001595PubMedCentralPubMedCrossRefGoogle Scholar
  58. Zannou A, Ahanchede A, Struik P, Richard P, Zoundjihekpon J, Tossou R, Vodouhe S (2004) Yam and cowpea diversity management by farmers in the Guinea–Sudan transition zone of Benin. NJAS (Wageningen J Life Sci) 52:393–420CrossRefGoogle Scholar
  59. Zannou A, Richards P, Struik PC (2006) Knowledge on yam variety development: insights from farmers’ and researchers’ practices. Knowl Manag Dev J 2:30–39Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gezahegn Girma
    • 1
    • 2
  • Katie E. Hyma
    • 3
    • 4
  • Robert Asiedu
    • 1
  • Sharon E. Mitchell
    • 3
  • Melaku Gedil
    • 1
  • Charles Spillane
    • 2
  1. 1.International Institute of Tropical Agriculture (IITA)IbadanNigeria
  2. 2.Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), School of Natural SciencesNational University of Ireland GalwayGalwayIreland
  3. 3.Institute for Genomic DiversityCornell UniversityIthacaUSA
  4. 4.Bioinformatics FacilityCornell UniversityIthacaUSA

Personalised recommendations