Theoretical and Applied Genetics

, Volume 127, Issue 5, pp 1091–1104 | Cite as

Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii

  • István Molnár
  • Marie Kubaláková
  • Hana Šimková
  • András Farkas
  • András Cseh
  • Mária Megyeri
  • Jan Vrána
  • Márta Molnár-Láng
  • Jaroslav Doležel
Original Paper

Abstract

Key message

Chromosomes 5Au, 5S and 5D can be isolated from wild progenitors, providing a chromosome-based approach to develop tools for breeding and to study the genome evolution of wheat.

Abstract

The three subgenomes of hexaploid bread wheat originated from Triticum urartu (AuAu), from a species similar to Aegilops speltoides (SS) (progenitor of the B genome), and from Ae. tauschii (DD). Earlier studies indicated the potential of chromosome genomics to assist gene transfer from wild relatives of wheat and discover novel genes for wheat improvement. This study evaluates the potential of flow cytometric chromosome sorting in the diploid progenitors of bread wheat. Flow karyotypes obtained by analysing DAPI-stained chromosomes were characterized and the contents of the chromosome peaks were determined. FISH analysis with repetitive DNA probes proved that chromosomes 5Au, 5S and 5D could be sorted with purities of 78–90 %, while the remaining chromosomes could be sorted in groups of three. Twenty-five conserved orthologous set (COS) markers covering wheat homoeologous chromosome groups 1–7 were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. These assays validated the cytomolecular results as follows: peak I on flow karyotypes contained chromosome groups 1, 4 and 6, peak II represented homoeologous group 5, while peak III consisted of groups 2, 3 and 7. The isolation of individual chromosomes of wild progenitors provides an attractive opportunity to investigate the structure and evolution of the polyploid genome and to deliver tools for wheat improvement.

Supplementary material

122_2014_2282_MOESM1_ESM.doc (68 kb)
Online Resource 1. Primer sequences and annealing temperatures of the COS markers used in the present study (DOC 68 kb)
122_2014_2282_MOESM2_ESM.doc (87 kb)
Online Resource 2. PCR products of the COS markers amplified from total genomic DNA (gDNA) of wheat (Mv9kr1), from the diploid progenitors and from subgenomic DNA samples derived from chromosomes sorted from peaks I–III on the flow karyotypes of T. urartu MvGB115, Ae. speltoides MvGB905 and Ae. tauschii MvGB605 (DOC 87 kb)

References

  1. Akhunov ED, Akhunova AR, Dvorak J (2005) BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploidy wheat. Theor Appl Genet 111:1617–1622. doi:10.1007/s00122-005-0093-1 PubMedGoogle Scholar
  2. Badaeva ED, Friebe B, Gill BS (1996a) Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306. doi:10.1139/g96-040 PubMedGoogle Scholar
  3. Badaeva ED, Friebe B, Gill BS (1996b) Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species. Genome 39:1150–1158. doi:10.1139/g96-145 PubMedGoogle Scholar
  4. Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, Shostak NG et al (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76. doi:10.1007/s00606-003-0072-4 Google Scholar
  5. Bennetzen JL (2007) Patterns in grass genome evolution. Curr Opin Plant Biol 10:176–181. doi:10.1016/j.pbi.2007.01.010 PubMedGoogle Scholar
  6. Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C et al (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775. doi:10.1111/j.1467-7652.2010.00587.x PubMedGoogle Scholar
  7. Boyko EV, Gill KS, Mickelson-Young L, Nasuda S, Raupp WJ et al (1999) A high-density genetic linkage map of Aegilops tauschii, the D genome progenitor of bread wheat. Theor Appl Genet 99:16–26. doi:10.1007/s001220051204 Google Scholar
  8. Brenchley R, Spannag M, Pfeifer M, Barker GLA, D’Amore R et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710. doi:10.1038/nature11650 PubMedCentralPubMedGoogle Scholar
  9. Burt C, Nicholson P (2011) Exploiting co-linearity among grass species to map the Aegilops ventricosa-derived Pch1 eyespot resistance in wheat and establish its relationship to Pch2. Theor Appl Genet 123:1387–1400. doi:10.1007/s00122-011-1674-9 PubMedGoogle Scholar
  10. Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P et al (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665. doi:10.1023/A:1014824404623 Google Scholar
  11. Chang KD, Fang SA, Chang FC, Chung MC (2010) Chromosomal conservation and sequence diversity of ribosomal RNA genes of two distant Oryza species. Genomics 96:181–190. doi:10.1016/j.ygeno.2010.05.005 PubMedGoogle Scholar
  12. Charles M, Belcram H, Just J, Huneau C, Viollet A et al (2008) Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 180:1071–1086. doi:10.1534/genetics.108.092304 PubMedCentralPubMedGoogle Scholar
  13. Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 109:34–42. doi:10.1159/000082379 PubMedGoogle Scholar
  14. Cox TS (1998) Deepening the wheat gene pool. J Crop Prod 1:1–25. doi:10.1300/J144v01n01_01 Google Scholar
  15. Cox TS, Hatchett JH, Gill BS, Raupp WJ, Sears RG (1990) Agronomic performance of hexaploid wheat lines derived from direct crosses between wheat and Aegilops squarrosa. Plant Breed 105:271–277. doi:10.1111/j.1439-0523.1990.tb01285.x Google Scholar
  16. Cseh A, Soós V, Rakszegi M, Türkösi E, Balázs E, Molnár-Láng M (2013) Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. Ann Appl Biol 163:142–150. doi:10.1111/aab.12043 Google Scholar
  17. Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646. doi:10.1105/tpc.12.5.637 PubMedCentralPubMedGoogle Scholar
  18. Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A et al (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858. doi:10.1104/pp.110.159079 PubMedCentralPubMedGoogle Scholar
  19. Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120. doi:10.1007/BF02907241 Google Scholar
  20. Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C (2007) Chromosome based genomics in the cereals. Chromosome Res 15:51–66. doi:10.1007/s10577-006-1106-x PubMedGoogle Scholar
  21. Doležel J, Vrána J, Safář J, Bartoš J, Kubaláková M et al (2012) Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 12:397–416. doi:10.1007/s10142-012-0293-0 PubMedCentralPubMedGoogle Scholar
  22. Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H (2014) Advances in plant chromosome genomics. Biotechnol Adv 32:122–136. doi:10.1016/j.biotechadv.2013.12.011 Google Scholar
  23. Dreisigacker S, Kishii M, Lage J, Warburton M (2008) Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res 59:413–420. doi:10.1071/AR07225 Google Scholar
  24. Dvorak J, Di Terlizzi P, Zhang H-B, Resta P (1993) The evolution of polyploid wheat: identification of the A genome donor species. Genome 36:21–31. doi:10.1139/g93-004 PubMedGoogle Scholar
  25. Dvorak J, Luo MC, Yang ZL (1998) Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148:423–434PubMedCentralPubMedGoogle Scholar
  26. Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2–9. doi:10.1111/j.1467-7652.2009.00459.x PubMedGoogle Scholar
  27. Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321PubMedCentralPubMedGoogle Scholar
  28. Feldman M, Levy AA (2005) Allopolyploidy: a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258. doi:10.1159/000082407 PubMedGoogle Scholar
  29. Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63:5045–5059. doi:10.1093/jxb/ers192 PubMedGoogle Scholar
  30. Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10. doi:10.1093/aob/mcf008 PubMedGoogle Scholar
  31. Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32. doi:10.1016/j.tig.2007.11.001 PubMedGoogle Scholar
  32. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. doi:10.1007/BF00035277 Google Scholar
  33. Fritz AK, Cox TS, Gill BS, Sears RG (1995) Marker-based analysis of quantitative traits in winter wheat by Triticum tauschii populations. Crop Sci 35:1695–1699. doi:10.2135/cropsci1995.0011183X003500060031x Google Scholar
  34. Furuta Y, Nishikawa K, Yamaguchi S (1986) Nuclear DNA content in diploid wheat and its relatives in relation to the phylogeny of tetraploid wheat. Jpn J Genet 61:97–105. doi:10.1266/jjg.61.97 Google Scholar
  35. Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179. doi:10.1007/BF00222940 PubMedGoogle Scholar
  36. Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362–374. doi:10.1139/g91-058 Google Scholar
  37. Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C et al (2013) FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8:e57994. doi:10.1371/journal.pone.0057994 PubMedCentralPubMedGoogle Scholar
  38. Grosso V, Farina A, Gennaro A, Giorgi D, Lucretti S (2012) Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum L. (H. villosa) by a single DNA probe. PLoS One 7:e50151. doi:10.1371/journal.pone.0050151 PubMedCentralPubMedGoogle Scholar
  39. Guzmán C, Alvarez JB (2012) Molecular characterization of a novel waxy allele (Wx-A u 1a) from Triticum urartu Thum. ex Gandil. Genet Resour Crop Evol 59:971–979. doi:10.1007/s10722-012-9849-z Google Scholar
  40. Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S et al (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386. doi:10.1111/j.1365-313X.2011.04808.x PubMedGoogle Scholar
  41. Howard T, Rejab NA, Griffiths S, Leigh F, Leverington-Waite M et al (2011) Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J Exp Bot 62:2217–2228. doi:10.1093/jxb/erq423 PubMedCentralPubMedGoogle Scholar
  42. Jia J, Zhao S, Kong X, Li Y, Zhao G et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95. doi:10.1038/nature12028 PubMedGoogle Scholar
  43. Jiang J, Gill BS (1994) New 18S-26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103:179–185. doi:10.1007/BF00368010 PubMedGoogle Scholar
  44. Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477. doi:10.1007/s001220051094 Google Scholar
  45. Kilian B, Mammen K, Millet E, Sharma R, Graner A et al (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 1–76. doi:10.1007/978-3-642-14228-4_1 Google Scholar
  46. Klindworth DL, Hareland GA, Elias EM, Xu SS (2013) Attempted compensation for linkage drag affecting agronomic characteristics of durum wheat 1AS/1DL translocation lines. Crop Sci 53:422–429. doi:10.2135/cropsci2012.05.0310 Google Scholar
  47. Koebner RMD, Martin PK, Orford SM, Miller TE (1996) Responses to salt stress controlled by the homeologous group 5 chromosomes of hexaploid wheat. Plant Breed 115:81–84. doi:10.1111/j.1439-0523.1996.tb00878.x Google Scholar
  48. Kofler R, Bartoš J, Gong L, Stift G, Suchánková P et al (2008) Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1. Theor Appl Genet 117:915–926. doi:10.1007/s00122-008-0831-2 PubMedGoogle Scholar
  49. Krolow KD (1970) Untersuchungen über die Kreuzbarkeit zwischen Weizen und Roggen. Z Pflanzenzücht 64:44–72Google Scholar
  50. Kubaláková M, Macas J, Doležel J (1997) Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor Appl Genet 94:758–763. doi:10.1007/s001220050475 Google Scholar
  51. Kubaláková M, Valárik M, Bartoš J, Vrána J, Číhalíková J et al (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46:893–905. doi:10.1139/g03-054 PubMedGoogle Scholar
  52. Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J et al (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170:823–829. doi:10.1534/genetics.104.039180 PubMedCentralPubMedGoogle Scholar
  53. Kumar A, Simons K, Iqbal MJ, de Jiménez M, Bassi FM et al (2012) Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics 13:597. doi:10.1186/1471-2164-13-597 PubMedCentralPubMedGoogle Scholar
  54. Leighty CE, Boshnakian S (1921) Genetic behaviour of the spelt form in crosses between Triticum spelta and Triticum aestivum. J Agric Res 7:335–364Google Scholar
  55. Limin AE, Fowler DB (1993) Inheritance of cold hardiness in Triticum aestivum x synthetic hexaploid wheat crosses. Plant Breed 110:103–108. doi:10.1111/j.1439-0523.1993.tb01220.x Google Scholar
  56. Ling H-Q, Zhao S, Liu D, Wang J, Sun H et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90. doi:10.1038/nature11997 PubMedGoogle Scholar
  57. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Ann Rev Plant Biol 60:43–66. doi:10.1146/annurev.arplant.59.032607.092744 Google Scholar
  58. Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361. doi:10.1139/g91-057 Google Scholar
  59. Lysák MA, Číhalíková J, Kubaláková M, Šimková H, Künzel G et al (1999) Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosome Res 7:431–444. doi:10.1023/A:1009293628638 PubMedGoogle Scholar
  60. MacKey J (1954) Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40:65–180Google Scholar
  61. Maestra B, Naranjo T (1998) Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theor Appl Genet 97:181–186. doi:10.1007/s001220050883 Google Scholar
  62. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. doi:10.1038/nature03959 PubMedCentralPubMedGoogle Scholar
  63. Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J et al (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698PubMedCentralPubMedGoogle Scholar
  64. Mayer KFX, Taudien S, Martis M, Šimková H, Suchánková P et al (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505. doi:10.1104/pp.109.142612 PubMedCentralPubMedGoogle Scholar
  65. Mayer KFX, Martis M, Hedley PE, Simková H, Liu H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263. doi:10.1105/tpc.110.082537 PubMedCentralPubMedGoogle Scholar
  66. Megyeri M, Farkas A, Varga M, Kovács G, Molnár-Láng M, Molnár I (2012) Karyotypic analysis of Triticum monococcum using standard repetitive DNA probes and simple sequence repeats. Acta Agron Hung 60:87–95. doi:10.1556/AAgr.60.2012.2.1 Google Scholar
  67. Molnár I, Benavente E, Molnár-Láng M (2009) Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum-Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52:156–165. doi:10.1139/G08-114 PubMedGoogle Scholar
  68. Molnár I, Cifuentes M, Schneider A, Benavente E, Molnár-Láng M (2011a) Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann Bot 107:65–76. doi:10.1093/aob/mcq215 PubMedCentralPubMedGoogle Scholar
  69. Molnár I, Kubaláková M, Šimková H, Cseh A, Molnár-Láng M, Doležel J (2011b) Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS One 6:e27708. doi:10.1371/journal.pone.0027708 PubMedCentralPubMedGoogle Scholar
  70. Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A et al (2013) Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One 8:e70844. doi:10.1371/journal.pone.0070844 PubMedCentralPubMedGoogle Scholar
  71. Muramatsu M (1986) The vulgare super gene, Q: its universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats. Can J Genet Cytol 28:30–41. doi:10.1139/g86-006 Google Scholar
  72. Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38:479–486. doi:10.1139/g95-063 Google Scholar
  73. Özkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747. doi:10.1105/TPC.010082 PubMedCentralPubMedGoogle Scholar
  74. Özkan H, Tuna M, Arumuganathan K (2003) Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Hered 94:260–264. doi:10.1093/jhered/esg053 PubMedGoogle Scholar
  75. Özkan H, Tuna M, Kilian B, Mori N, Ohta S (2010) Genome size variation in diploid and tetraploid wild wheats. AoB Plants 2010:plq015. doi:10.1093/aobpla/plq015 PubMedCentralPubMedGoogle Scholar
  76. Parida SK, Kumar ARK, Dalal V, Singh NK, Mohapatra T (2006) Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet 112:808–817. doi:10.1007/s00122-005-0182-1 PubMedGoogle Scholar
  77. Požárková D, Koblížková A, Román B, Torres AM, Lucretti S et al (2002) Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant 45:337–345. doi:10.1023/A:1016253214182 Google Scholar
  78. Quarrie SA, Gulli M, Calestani C, Steed A, Marmiroli N (1994) Location of a gene regulation drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet 89:794–800. doi:10.1007/BF00223721 PubMedGoogle Scholar
  79. Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M et al (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484. doi:10.1007/s10142-009-0129-8 PubMedGoogle Scholar
  80. Rees H, Walters MR (1965) Nuclear DNA and the evolution of wheat. Heredity 20:73–82Google Scholar
  81. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715. doi:10.1038/182713a0 Google Scholar
  82. Riley R, Chapman V (1967) The inheritance in wheat of crossability with rye. Genet Res Camb 9:259–267. doi:10.1017/S0016672300010569 Google Scholar
  83. Román B, Satovic Z, Požárková D, Macas J, Doležel J et al (2004) Development of a composite map in Vicia faba, breeding applications and future prospects. Theor Appl Genet 108:1079–1088. doi:10.1007/s00122-003-1515-6 PubMedGoogle Scholar
  84. Rouse MN, Jin Y (2011) Stem rust resistance in A-genome diploid relatives of wheat. Plant Dis 95:941–944. doi:10.1094/PDIS-04-10-0260 Google Scholar
  85. Šafář J, Šimková H, Kubaláková M, Číhalíková J, Suchánková P et al (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223. doi:10.1159/000313072 PubMedGoogle Scholar
  86. Schachtman DP, Lagudah ES, Munns R (1992) The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theor Appl Genet 84:714–719. doi:10.1007/BF00224174 PubMedGoogle Scholar
  87. Schatz M, Langmead B, Salzberg S (2010) Cloud computing and the DNA data race. Nat Biotechnol 28:691–693. doi:10.1038/nbt0710-691 PubMedCentralPubMedGoogle Scholar
  88. Schneider A, Linc G, Molnár I, Molnár-Láng M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheat-Aegilops biuncialis disomic addition lines. Genome 48:1070–1082. doi:10.1139/g05-062 PubMedGoogle Scholar
  89. Schneider A, Molnár I, Molnár-Láng M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19. doi:10.1007/s10681-007-9624-y Google Scholar
  90. Sepsi A, Molnár I, Szalay D, Molnár-Láng M (2008) Characterization of a leaf rust-resistant wheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet 116:825–834. doi:10.1007/s00122-008-0716-4 PubMedGoogle Scholar
  91. Shangguan L, Han J, Kayesh E, Sun X, Zhang C et al (2013) Evaluation of genome sequencing quality in selected plant species using expressed sequence tags. PLoS One 8:e69890. doi:10.1371/journal.pone.0069890 PubMedCentralPubMedGoogle Scholar
  92. Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P et al (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genom 9:294. doi:10.1186/1471-2164-9-294 Google Scholar
  93. Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y-S et al (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555. doi:10.1534/genetics.105.044727 PubMedCentralPubMedGoogle Scholar
  94. Sitch LA, Snape JW, Firman SJ (1985) Intrachromosomal mapping of crossability genes in wheat (Triticum aestivum). Theor Appl Genet 70:309–314. doi:10.1007/BF00304917 PubMedGoogle Scholar
  95. Snape JW, Semikhodskii A, Fish L, Sarma RN, Quarrie SA et al (1997) Mapping frost resistance loci in wheat and comparative mapping with other cereals. Acta Agron Hung 45:265–270Google Scholar
  96. Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44. doi:10.1007/BF00042613 Google Scholar
  97. Sutka J, Galiba G, Vágújfalvi A, Gill BS, Snape JW (1999) Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. Theor Appl Genet 99:199–202. doi:10.1007/s001220051225 Google Scholar
  98. Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold regulated transcriptional activator Cbf3 is linked to the frost-tolerance gene Fr-A2 on wheat chromosome 5A. Mol Genet Genomics 269:60–67. doi:10.1007/s00438-003-0806-6 PubMedGoogle Scholar
  99. Vitulo N, Albiero A, Forcato C, Campagna D, Dal Pero F et al (2011) First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One 6:e26421. doi:10.1371/journal.pone.0026421 PubMedCentralPubMedGoogle Scholar
  100. Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA et al (2000) Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041PubMedCentralPubMedGoogle Scholar
  101. Wenzl P, Suchánková P, Carling J, Šimková H, Huttner E et al (2010) Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic maps. Theor Appl Genet 121:465–474. doi:10.1007/s00122-010-1323-8 PubMedGoogle Scholar
  102. Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B et al (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23:1706–1718. doi:10.1105/tpc.111.086629 PubMedCentralPubMedGoogle Scholar
  103. Xiu-Jin L, Deng-Cai L, Zhi-Rong W (1997) Inheritance in synthetic hexaploid wheat ‘RSP’ of sprouting tolerance derived from Aegilops tauschii Coss. Euphytica 95:321–323. doi:10.1023/A:1003078801358 Google Scholar
  104. You FM, Huo N, Deal KR, Gu YQ, Luo M-C et al (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 12:59. doi:10.1186/1471-2164-12-59 PubMedCentralPubMedGoogle Scholar
  105. Yu J, Wang J, Lin W, Li S, Li H et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38. doi:10.1371/journal.pbio.0030038 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • István Molnár
    • 1
  • Marie Kubaláková
    • 2
  • Hana Šimková
    • 2
  • András Farkas
    • 1
  • András Cseh
    • 1
  • Mária Megyeri
    • 1
  • Jan Vrána
    • 2
  • Márta Molnár-Láng
    • 1
  • Jaroslav Doležel
    • 2
  1. 1.Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásárHungary
  2. 2.Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental BotanyOlomoucCzech Republic

Personalised recommendations