Advertisement

Theoretical and Applied Genetics

, Volume 127, Issue 4, pp 957–968 | Cite as

Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.)

  • Congcong Jiang
  • Jiaqin Shi
  • Ruiyuan Li
  • Yan Long
  • Hao Wang
  • Dianrong Li
  • Jianyi Zhao
  • Jinling MengEmail author
Original Paper

Abstract

Key message

This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations.

Abstract

Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.

Keywords

Quantitative Trait Locus Linkage Group Quantitative Trait Locus Mapping Epistatic Interaction Quantitative Trait Locus Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Basic Research and Development Program (2006CB101600), P. R. China.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2014_2271_MOESM1_ESM.xlsx (10 kb)
Supplementary material 1. Temporal and spatial details of the 15 independent experiments that based on TN population (XLSX 10 kb)
122_2014_2271_MOESM2_ESM.xlsx (50 kb)
Supplementary material 2. The TN genetic map that used in this study (XLSX 50 kb)
122_2014_2271_MOESM3_ESM.xlsx (20 kb)
Supplementary material 3. Seed oil content QTL that identified in TN population (XLSX 20 kb)
122_2014_2271_MOESM4_ESM.xlsx (10 kb)
Supplementary material 4. Projected locations on TN genetic map of the QTL that identified in other populations (XLSX 10 kb)

References

  1. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326PubMedCrossRefGoogle Scholar
  2. Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, Baker D, Long Y, Meng J, Wang X, Liu S, Trick M (2011) Genome dissection in the polyploidy crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29:762–766PubMedCrossRefGoogle Scholar
  3. Barker GC, Larson TR, Graham IA, Lynn JR, King GJ (2007) Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait loci analysis of the Brassica C genome. Plant Physiol 144:1827–1842PubMedCentralPubMedCrossRefGoogle Scholar
  4. Baud S, Mendoza MS, To A, Harscoët E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838PubMedCrossRefGoogle Scholar
  5. Baud S, Wuillème S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60:933–947PubMedCrossRefGoogle Scholar
  6. Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity 90:39–48PubMedCrossRefGoogle Scholar
  7. Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585PubMedCrossRefGoogle Scholar
  8. Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty P, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174CrossRefGoogle Scholar
  9. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J, Deschamps M, Margale E, Vincourt P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345PubMedCrossRefGoogle Scholar
  10. Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, André I, Duarte J, Gauthier V, Lucante N, Marty A, Pauchon M, Pichon JP, Ribière N, Trotoux G, Blanchard P, Rivière N, Martinant JP, Pauquet J (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genom 14:120CrossRefGoogle Scholar
  11. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294PubMedCentralPubMedGoogle Scholar
  12. Ecke W, Uzunova M, Weißleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977PubMedGoogle Scholar
  13. Feng J, Long Y, Shi L, Shi J, Barker G, Meng J (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108PubMedCrossRefGoogle Scholar
  14. Focks N, Benning C (1998) wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101PubMedCentralPubMedCrossRefGoogle Scholar
  15. Frascaroli E, Canè MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pè ME (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176:625–644PubMedCentralPubMedCrossRefGoogle Scholar
  16. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444PubMedCentralPubMedGoogle Scholar
  17. Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487PubMedCrossRefGoogle Scholar
  18. Mekhedov S, de Ilárduya OM, Ohlrogge J (2000) Toward a functional catalog of the plant genome: a survey of genes for lipid biosynthesis. Plant Physiol 122:389–402PubMedCentralPubMedCrossRefGoogle Scholar
  19. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970PubMedCentralPubMedCrossRefGoogle Scholar
  20. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80PubMedCrossRefGoogle Scholar
  21. Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558PubMedCentralPubMedCrossRefGoogle Scholar
  22. Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E (2013a) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theor Appl Genet 126:119–132PubMedCrossRefGoogle Scholar
  23. Raman H, Raman R, Kilian A, Detering F, Long Y, Edwards D, Parkin IA, Sharpe AG, Nelson MN, Larkan N, Zou J, Meng J, Aslam MN, Batley J, Cowling WA, Lydiate D (2013b) A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits. BMC Genomics 14:277PubMedCentralPubMedCrossRefGoogle Scholar
  24. Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861PubMedCentralPubMedCrossRefGoogle Scholar
  25. Shi J, Li R, Zou J, Long Y, Meng J (2011) A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PLoS One 6:e21645PubMedCentralPubMedCrossRefGoogle Scholar
  26. Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264CrossRefGoogle Scholar
  27. Wang SC, Bastern J, Zeng ZB (2006) Windows QTL Cartographer 2.5. North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
  28. Wang H, Guo J, Lambert KN, Lin Y (2007) Developmental control of Arabidopsis seed oil biosynthesis. Planta 226:773–783PubMedCrossRefGoogle Scholar
  29. Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180:751–765PubMedCrossRefGoogle Scholar
  30. Würschum T, Liu W, Maurer HP, Abel S, Reif JC (2012) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124(1):153–161PubMedCrossRefGoogle Scholar
  31. Würschum T, Maurer HP, Dreyer F, Reif JC (2013) Effect of inter- and intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus L.). Theor Appl Genet 126(2):435–441PubMedCrossRefGoogle Scholar
  32. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedCentralPubMedGoogle Scholar
  33. Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2005) Oil content in an European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci 45:51–59CrossRefGoogle Scholar
  34. Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38PubMedCrossRefGoogle Scholar
  35. Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2012) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124:407–421PubMedCrossRefGoogle Scholar
  36. Zou J, Jiang C, Cao Z, Li R, Long Y, Chen S, Meng J (2010) Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping. Genome 53:908–916PubMedCrossRefGoogle Scholar
  37. Zou X, Suppanz I, Raman H, Hou J, Wang J, Long Y, Jung C, Meng J (2012) Comparative analysis of FLC homologues in Brassicaceae provides insight into their role in the evolution of oilseed rape. PLoS One 7:e45751PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Congcong Jiang
    • 1
  • Jiaqin Shi
    • 1
  • Ruiyuan Li
    • 1
  • Yan Long
    • 1
  • Hao Wang
    • 2
  • Dianrong Li
    • 2
  • Jianyi Zhao
    • 3
  • Jinling Meng
    • 1
    Email author
  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  2. 2.Hybrid Rapeseed Research Centre of ShaanxiDaliPeople’s Republic of China
  3. 3.Institute of Crop and Nuclear Technology UtilizationZhejiang Academy of Agricultural SciencesHangzhouPeople’s Republic of China

Personalised recommendations