Theoretical and Applied Genetics

, Volume 127, Issue 3, pp 691–702 | Cite as

QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species

  • Sompong Chankaew
  • Takehisa Isemura
  • Ken Naito
  • Eri Ogiso-Tanaka
  • Norihiko Tomooka
  • Prakit Somta
  • Akito Kaga
  • Duncan A. Vaughan
  • Peerasak Srinives
Original Paper


Key message

QTL mapping in F 2 population [ V. luteola × V. marina subsp. oblonga ] revealed that the salt tolerance in V. marina subsp. oblonga is controlled by a single major QTL.


The habitats of beach cowpea (Vigna marina) are sandy beaches in tropical and subtropical regions. As a species that grows closest to the sea, it has potential to be a gene source for breeding salt-tolerant crops. We reported here for the first time, quantitative trait loci (QTLs) mapping for salt tolerance in V. marina. A genetic linkage map was constructed from an F2 population of 120 plants derived from an interspecific cross between V. luteola and V. marina subsp. oblonga. The map comprised 150 SSR markers. The markers were clustered into 11 linkage groups spanning 777.6 cM in length with a mean distance between the adjacent markers of 5.59 cM. The F2:3 population was evaluated for salt tolerance under hydroponic conditions at the seedling and developmental stages. Segregation analysis indicated that salt tolerance in V. marina is controlled by a few genes. Multiple interval mapping consistently identified one major QTL which can explain about 50 % of phenotypic variance. The flanking markers may facilitate transfer of the salt tolerance allele from V. marina subsp. oblonga into related Vigna crops. The QTL for domestication-related traits from V. marina are also discussed.


Quantitative Trait Locus Salt Tolerance Common Bean Quantitative Trait Locus Analysis Quantitative Trait Locus Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by JST, PRESTO to K. Naito, and by the Royal Golden Jubilee (RGJ) Ph.D. Program jointly funded by the Thailand Research Fund (TRF) and Kasetsart University to P. Srinives and S. Chankaew.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All the experiments carried out in this study comply with the current laws of both Thailand and Japan.

Supplementary material

122_2013_2251_MOESM1_ESM.doc (53 kb)
Supplementary material 1 (DOC 53 kb)
122_2013_2251_MOESM2_ESM.eps (1.8 mb)
Supplementary material 2 (EPS 1886 kb)


  1. Arraouadi S, Badri M, Abdelly C, Huguet T, Aoudi ME (2012) QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula recombinant inbred lines. Genomics 99:118–125PubMedCrossRefGoogle Scholar
  2. Ashraf MA, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20CrossRefGoogle Scholar
  3. Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Thome J (2003) Development of a genome-wide anchored microsatellite map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374PubMedCrossRefGoogle Scholar
  4. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  5. FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO land and plant nutrition management service, RomeGoogle Scholar
  6. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedCrossRefGoogle Scholar
  7. Foolad MR (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42:727–734CrossRefGoogle Scholar
  8. Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult 76:101–119CrossRefGoogle Scholar
  9. Gaitán-Solís E, Duque MC, Edwards KJ, Thome J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136CrossRefGoogle Scholar
  10. Greenway H, Munns H (1980) Mechanisms of salt tolerance in non halophytes. Annu Rev Plant Physiol 31:149–190CrossRefGoogle Scholar
  11. Han O, Kaga A, Isemura T, Wang XW, Tomooka N, Vaughan DA (2005) A genetic linkage map for azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet 111:1288–1299CrossRefGoogle Scholar
  12. Isemura T, Kaga A, Konishi S, Ando T, Tomooka N, Han OK, Vaughan DA (2007) Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Ann Bot 100:1053–1071PubMedCrossRefGoogle Scholar
  13. Isemura T, Kaga A, Tomooka N, Shimizu T, Vaughan DA (2010) The genetics of domestication of rice bean, Vigna umbellata. Ann Bot 106:927–944PubMedCrossRefGoogle Scholar
  14. Isemura I, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Jo U, Vaughan DA, Tomooka N (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 7(8):e41304PubMedCentralPubMedCrossRefGoogle Scholar
  15. Kaga A, Vaughan DA, Tomooka N (2005) Molecular markers in Vigna improvement: understanding and using gene pools. In: Lorz H, Wanzel G (eds) Biotechnology in agriculture and forestry, vol 55., Molecular marker systemsBerlin, Springer, pp 171–187Google Scholar
  16. Kaga A, Isemura T, Tomooka N, Vaughan DA (2008) The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178:1013–1036PubMedCrossRefGoogle Scholar
  17. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216PubMedGoogle Scholar
  18. Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman and Hall, LondonCrossRefGoogle Scholar
  19. Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, Vaughan DA, Srinives P (2012a) An SSR-based linkage map of yardlong bean [Vigna unguiculata ssp. sesquipedalis (L.) Verc.] and QTL analysis of pod length. Genome 55:81–92PubMedCrossRefGoogle Scholar
  20. Kongjaimun A, Kaga A, Tomooka N, Somta P, Vaughan DA, Srinives P (2012b) The genetics of domestication of yardlong bean [Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis]. Ann Bot 109:1185–1200PubMedCrossRefGoogle Scholar
  21. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  22. Lawn RJ, Cottrell A (1988) Wild mungbean and its relatives in Australia. Biologist 35:267–273Google Scholar
  23. Lee SH (2012) Toward completion of genome sequence of mungbean. In: Abstract book, VI International Conference on Legume Genetics and Genomics, 2–7 October 2012, Hyderabad, IndiaGoogle Scholar
  24. Lee GJ, Boerma HR, Villagarcia MR, Zhou X, Carter TE Jr, Li Z, Gibbs MO (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendant cultivars. Theor Appl Genet 109:1610–1619PubMedCrossRefGoogle Scholar
  25. Leonforte A, Sudheesh S, Cogan NOI, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161. doi: 10.1186/1471-2229-13-161 PubMedCrossRefGoogle Scholar
  26. Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the world. Kew, Royal Botanic GardensGoogle Scholar
  27. Li CD, Fatokun CA, Ubi B, Singh BB, Scoles GJ (2001) Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite markers. Crop Sci 41:189–197CrossRefGoogle Scholar
  28. Lobato AKS, Santos Filho BG, Costa RCL, Goncalva-Vidigal MC, Moraes EC, Oliveira Neto CF, Rodriges VLF, Cruz FJR, Ferreira AS, Pita JD, Barreto AGT (2009) Morphological, physiological and biochemical responses during germination of the cowpea (Vigna unguiculata cv. Pitiuba) seeds under salt stress. World J Agric Sci 5:590–596Google Scholar
  29. Lodhi MA, Ye GN, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13CrossRefGoogle Scholar
  30. Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272CrossRefGoogle Scholar
  31. Maréchal R, Mascherpa JM, Stainer F (1978) Extude taxonomique d’un groupe d’espèces des genres Phaseolus et Vigna (V. unguiculata) sur la base de données morphologiques et polliniques, traitées pour l’analyse informatique. Boissiera 28:160–272Google Scholar
  32. Mehra KL, Ibrahim AH (1989) Genetic resources in the Maldives. FAO/IBPGR Plant Genet Resour Newsl 75(76):42–43Google Scholar
  33. Padulosi S, Ng NQ (1993) A useful and unexploited herb, Vigna marina (Leguminosae-Papilionideae) and the taxonomic revision of its genetic diversity. Bull Jard Bot Nat Belg 62:119–126CrossRefGoogle Scholar
  34. Palmer JL, Lawn RJ, Adkins SW (2002) An embryo-rescue protocol for Vigna interspecific hybrids. Aust J Bot 50:331–338CrossRefGoogle Scholar
  35. Quesada V, Martinez SG, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130:951–963PubMedCentralPubMedCrossRefGoogle Scholar
  36. Rogers ME, Craig AD, Munns R et al (2005) The development of fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Aust J Exp Agric 45:301–329CrossRefGoogle Scholar
  37. Samineni S (2010) Physiology, genetics and QTL mapping of salt tolerance in chickpea (Cicer arietinum L.). Ph.D. Thesis, The University of Western AustraliaGoogle Scholar
  38. Sen NK, Bhowal JG (1960) Cytotaxonomic studies on Vigna. Cytologia 25:195–207CrossRefGoogle Scholar
  39. Smartt J (1978) The evaluation of pulse crops. Econ Bot 32:185–198CrossRefGoogle Scholar
  40. Somta P, Seehalak W, Srinives P (2009) Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet 10:1939–1943CrossRefGoogle Scholar
  41. Sonnante G, Spinosa A, Marangi A, Pignone D (1997) Isozyme and RAPD analysis of the genetic diversity within and between Vigna luteola and V. marina. Ann Bot 80:741–746CrossRefGoogle Scholar
  42. Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol 9:137PubMedCentralPubMedCrossRefGoogle Scholar
  43. Tomooka N, Vaughan DA, Moss H, Maxted N (2002) The Asian Vigna: genus Vigna subgenus Ceratotropis genetic resources. Kluwer Academic Publishers, NetherlandsCrossRefGoogle Scholar
  44. Tomooka N, Kaga A, Isemura T, Vaughan D (2011) Vigna. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, Legume crops and forages. Springer, Berlin, pp 291–311CrossRefGoogle Scholar
  45. Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121:229–236PubMedCrossRefGoogle Scholar
  46. Van Ooijen JW (2006) JoinMap version 4.0, software for the calculation of genetic linkage maps. Kyazma B.V, WageningenGoogle Scholar
  47. Verdcourt B (1970) Studies in the Leguminosae-Papilionoideae for the ‘Flora of Tropical East Africa’, IV. Kew Bull 24:507–569CrossRefGoogle Scholar
  48. Verdcourt B (1971) Phaseoleae. In: Milne-Redhead E, Polhill RM (eds) Flora of tropical East Africa, Leguminosae (part 4), Papilionideae (2). Crown Agents for Overseas Governments, London, pp 625–627Google Scholar
  49. Wang XW, Kaga A, Tomooka N, Vaughan DA (2004) The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet 109:352–360PubMedGoogle Scholar
  50. Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. North Carolina State University, RaleighGoogle Scholar
  51. Wilson C, Liu X, Lesch SM, Suarez DL (2009) Growth response of major U.S. cowpea cultivars. I. Biomass accumulation and salt tolerance. Hortic Sci 41:225–230Google Scholar
  52. Win KT, Oo AZ, Hirasawa T, Ookawa T, Yutaka H (2011) Genetic analysis of Myanmar Vigna species in response to salt stress at the seedling stage. Afr J Biotechnol 10:1615–1624Google Scholar
  53. Yu K, Park J, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434PubMedCrossRefGoogle Scholar
  54. Zhang LP, Lin GY, Foolad MR (2003) QTL comparison of salt tolerance during seed germination and vegetative growth in a Lycopersicon esculentum × L. pimpinellifolium RIL population. Acta Hort 618:59–67Google Scholar
  55. Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071–1082PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sompong Chankaew
    • 1
  • Takehisa Isemura
    • 2
  • Ken Naito
    • 2
    • 3
  • Eri Ogiso-Tanaka
    • 2
  • Norihiko Tomooka
    • 2
  • Prakit Somta
    • 4
  • Akito Kaga
    • 2
  • Duncan A. Vaughan
    • 2
  • Peerasak Srinives
    • 4
  1. 1.Program in Plant Breeding, Faculty of Agriculture at Kamphaeng SaenKasetsart UniversityKamphaeng SaenThailand
  2. 2.Genetic Resources CenterNational Institute of Agrobiological SciencesTsukubaJapan
  3. 3.JST, Precursory Research for Embryonic Science and Technology (PRESTO)KawaguchiJapan
  4. 4.Department of Agronomy, Faculty of Agriculture at Kamphaeng SaenKasetsart UniversityKamphaeng SaenThailand

Personalised recommendations