Theoretical and Applied Genetics

, Volume 127, Issue 3, pp 535–547

Genetic analyses of bolting in bulb onion (Allium cepa L.)

  • Samantha Baldwin
  • Roopashree Revanna
  • Meeghan Pither-Joyce
  • Martin Shaw
  • Kathryn Wright
  • Susan Thomson
  • Leire Moya
  • Robyn Lee
  • Richard Macknight
  • John McCallum
Original Paper


Key message

We present the first evidence for a QTL conditioning an adaptive trait in bulb onion, and the first linkage and population genetics analyses of candidate genes involved in photoperiod and vernalization physiology.


Economic production of bulb onion (Allium cepa L.) requires adaptation to photoperiod and temperature such that a bulb is formed in the first year and a flowering umbel in the second. ‘Bolting’, or premature flowering before bulb maturation, is an undesirable trait strongly selected against by breeders during adaptation of germplasm. To identify genome regions associated with adaptive traits we conducted linkage mapping and population genetic analyses of candidate genes, and QTL analysis of bolting using a low-density linkage map. We performed tagged amplicon sequencing of ten candidate genes, including the FT-like gene family, in eight diverse populations to identify polymorphisms and seek evidence of differentiation. Low nucleotide diversity and negative estimates of Tajima’s D were observed for most genes, consistent with purifying selection. Significant population differentiation was observed only in AcFT2 and AcSOC1. Selective genotyping in a large ‘Nasik Red × CUDH2150’ F2 family revealed genome regions on chromosomes 1, 3 and 6 associated (LOD > 3) with bolting. Validation genotyping of two F2 families grown in two environments confirmed that a QTL on chromosome 1, which we designate AcBlt1, consistently conditions bolting susceptibility in this cross. The chromosome 3 region, which coincides with a functionally characterised acid invertase, was not associated with bolting in other environments, but showed significant association with bulb sucrose content in this and other mapping pedigrees. These putative QTL and candidate genes were placed on the onion map, enabling future comparative studies of adaptive traits.









Cleaved amplified polymorphic sequence


Alien monosomic addition line

Supplementary material

122_2013_2232_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)
122_2013_2232_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 11 kb)
122_2013_2232_MOESM3_ESM.docx (29 kb)
Supplementary material 3 (DOCX 29 kb)
122_2013_2232_MOESM4_ESM.docx (12 kb)
Supplementary material 4 (DOCX 11 kb)


  1. Alan A, Brants A, Cobb E, Goldschmied P, Mutschler M, Earle E (2004) Fecund gynogenic lines from onion (Allium cepa L.) breeding materials. Plant Sci 167:1055–1066CrossRefGoogle Scholar
  2. Andrew W (1951) Vegetative reproduction of onions by the headset method. Proc Am Soc Hortic Sci 58:208–212Google Scholar
  3. Baldwin S, Pither-Joyce M, Wright K, Chen L, McCallum J (2012a) Development of robust genomic simple sequence repeat markers for estimation of genetic diversity within and among bulb onion (Allium cepa L.) populations. Mol Breed 30:1401–1411CrossRefGoogle Scholar
  4. Baldwin S, Revanna R, Thomson S, Pither-Joyce M, Wright K, Crowhurst R, Fiers M, Leshi C, Macknight R, McCallum JA (2012b) A toolkit for bulk pcr-based marker design from next-generation sequence data: application for development of a framework linkage map in bulb onion (Allium cepa L.). BMC Genomics 13:637PubMedCentralPubMedCrossRefGoogle Scholar
  5. Balk PA, de Boer AD (1999) Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein gamma-TIP. Planta 209:346–354PubMedCrossRefGoogle Scholar
  6. Benkeblia N, Onodera S, Yoshihira T, Kosaka S, Shiomi N (2004) Effect of temperature on soluble invertase activity, and glucose, fructose and sucrose status of onion bulbs (Allium cepa) in store. Int J Food Sci Nutr 55:325–331PubMedCrossRefGoogle Scholar
  7. Blackman BK, Strasburg JL, Raduski AR, Michaels SD, Rieseberg LH (2010) The role of recently derived FT paralogs in sunflower domestication. Curr Biol 20:629–635PubMedCentralPubMedCrossRefGoogle Scholar
  8. Brewster J (2008) Onions and other vegetable alliums. CABI Wallingford, UKCrossRefGoogle Scholar
  9. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890PubMedCrossRefGoogle Scholar
  10. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  11. Chang Y-Y, Chu Y-W, Chen C-W, Leu W-M, Hsu H-F, Yang C-H (2011) Characterization of Oncidium ‘Gower Ramsey’ Transcriptomes using 454 GS-FLX Pyrosequencing and their application to the identification of genes associated with flowering time. Plant Cell Physiol 52:1532–1545PubMedCrossRefGoogle Scholar
  12. Cingolani P, Platts A, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:0–1CrossRefGoogle Scholar
  13. Currah L, Proctor FJ (1990) Onions in tropical regions. Natural Resources Institute, UKGoogle Scholar
  14. Ding L, Wang Y, Yu H (2013) Overexpression of DOSOC1, an ortholog of arabidopsis SOC1, promotes flowering in the orchid Dendrobium chao parya smile. Plant Cell Physiol 54:595–608PubMedCrossRefGoogle Scholar
  15. Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126(8):2093–2101Google Scholar
  16. Goldman IL (1996) A list of germplasm releases from the University of Wisconsin Onion Breeding Program, 1957–1993. HortScience 31:878–879Google Scholar
  17. Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172PubMedCrossRefGoogle Scholar
  18. Havey MJ, Galmarini CR, Gokce AF, Henson C (2004) QTL affecting soluble carbohydrate concentrations in stored onion bulbs and their association with flavor and health-enhancing attributes. Genome 47:463–468PubMedCrossRefGoogle Scholar
  19. Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337PubMedCrossRefGoogle Scholar
  20. Hyde PT, Earle ED, Mutschler MA (2012) Doubled haploid onion (Allium cepa L.) Lines and their impact on hybrid performance. HortScience 47:1690–1695Google Scholar
  21. Hyun DY, Kim O-T, Bang K-H, Kim Y-C, Yoo NH, Kim CW, Lee JH (2009) Genetic and molecular studies for regulation of bolting time of onion (Allium cepa L.). J Plant Biol 52:602–608CrossRefGoogle Scholar
  22. Janssen T, Bremer K (2004) The age of major monocot groups inferred from 800 + rbcL sequences. Bot J Linn Soc 146:385–398CrossRefGoogle Scholar
  23. Kamenetsky R, Rabinowitch H (2002) Florogenesis. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances CAB international. Wallingford, UK, pp 31–58CrossRefGoogle Scholar
  24. Khokhar KM, Hadley P, Pearson S (2007) Effect of reciprocal transfers of onion sets between inductive and non-inductive temperatures on the incidence of bolting and bulbing and seed yield. Sci Hortic 112:245–250CrossRefGoogle Scholar
  25. Kofler R, Orozco-terWengel P, De Maio N, Pandey RV, Nolte V, Futschik A, Kosiol C, Schlotterer C (2011a) PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One 6:e15925PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kofler R, Pandey RV, Schlötterer C (2011b) PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 27:3435–3436PubMedCrossRefGoogle Scholar
  27. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105PubMedCrossRefGoogle Scholar
  28. Laurie RE, Diwadkar P, Jaudal M, Zhang L, Hecht V, Wen J, Tadege M, Mysore KS, Putterill J, Weller JL (2011) The medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time. Plant Physiol 156:2207–2224PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lee R, Baldwin S, Pither-Joyce M, McCallum J, Macknight R (2013) Onion bulb formation and flowering in response to seasonal cues involves FT homologs. Nat Commun (in press)Google Scholar
  30. Lercari B (1982) Changes in invertase activities during the photoperiodically induced bulb formation of onion (Allium cepa L.). Physiol Plant 54:480–484CrossRefGoogle Scholar
  31. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMedCrossRefGoogle Scholar
  32. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26(5):589–595Google Scholar
  33. Liang S, Ye Q-S, Li R-H, Leng J-Y, Li M-R, Wang X-J, Li H-Q (2012) Transcriptional regulations on the low-temperature-induced floral transition in an Orchidaceae species, Dendrobium nobile: an expressed sequence tags analysis. Comp Funct Genomics 2012, Article ID 757801, p 14Google Scholar
  34. Maas LF, McClung A, McCouch S (2010) Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theor Appl Genet 120:895–908PubMedCrossRefGoogle Scholar
  35. Matsoukas IG, Massiah AJ, Thomas B (2012) Florigenic and Antiflorigenic Signaling in Plants. Plant Cell Physiol 53:1827–1842PubMedCrossRefGoogle Scholar
  36. McCallum J, Clarke A, Pither-Joyce M, Shaw M, Butler R, Brash D, Scheffer J, Sims I, van Heusden S, Shigyo M, Havey M (2006a) Genetic mapping of a major gene affecting onion bulb fructan content. Theor Appl Genet 112:958–967PubMedCrossRefGoogle Scholar
  37. McCallum J, Pither-Joyce M, Shaw M, Kenel F, Davis S, Butler R, Scheffer J, Jakse J, Havey MJ (2006b) Genetic mapping of sulfur assimilation genes reveals a QTL for onion bulb pungency. Theor Appl Genet 114:815–822PubMedCrossRefGoogle Scholar
  38. McCallum J, Thomson S, Pither-Joyce M, Kenel F, Clarke A, Havey M (2008) Genetic diversity analysis and single-nucleotide polymorphism marker development in cultivated bulb onion based on expressed sequence tag simple sequence repeat markers. J Am Soc Hort Sci 133:810–818Google Scholar
  39. Meyer M, Stenzel U, Myles S, Prufer K, Hofreiter M (2007) Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res 35:e97PubMedCentralPubMedCrossRefGoogle Scholar
  40. Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3:267–278PubMedCrossRefGoogle Scholar
  41. Rabinowitch HD, Kamenetsky R (2002) Shallot (Allium cepa, Aggregatum Group). In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI Publishing, New York, pp 409–430CrossRefGoogle Scholar
  42. Revanna R, Turnbull MH, Shaw ML, Wright KM, Butler RC, Jameson PE, McCallum JA (2013) Measurement of the distribution of non-structural carbohydrate composition in onion populations by a high-throughput microplate enzymatic assay. J Sci Food Agric epub 16/03/2013Google Scholar
  43. Shigyo M, Tashiro Y, Isshiki S, Miyazaki S (1996) Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L.) with extra chromosomes from shallot (A-cepa L Aggregatum group). Genes Genet Syst 71:363–371PubMedCrossRefGoogle Scholar
  44. Skøt L, Sanderson R, Thomas A, Skøt K, Thorogood D, Latypova G, Asp T, Armstead I (2011) Allelic variation in the perennial ryegrass Flowering Locus T gene is associated with changes in flowering time across a range of populations. Plant Physiol 155:1013–1022PubMedCentralPubMedCrossRefGoogle Scholar
  45. Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2012–2037Google Scholar
  46. Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA 106:4555–4560PubMedCrossRefGoogle Scholar
  47. Taylor A, Massiah AJ, Thomas B (2010) Conservation of Arabidopsis thaliana photoperiodic flowering time genes in onion (Allium cepa L.). Plant Cell Physiol 51:1638–1647PubMedCrossRefGoogle Scholar
  48. Thévenot C, Simond-Côte E, Reyss A, Manicacci D, Trouverie J, Le Guilloux M, Ginhoux V, Sidicina F, Prioul J-L (2005) QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. J Exp Bot 56:945–958PubMedCrossRefGoogle Scholar
  49. Thomas T (1972) Stimulation of onion bulblet production by N6-benzyladenine. Hort Res 12:77–79Google Scholar
  50. Thomson MJ, Edwards JD, Septiningsih EM, Harrington SE, McCouch SR (2006) Substitution mapping of dth1. 1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172:2501–2514PubMedCrossRefGoogle Scholar
  51. Tsuji H, Taoka K-i, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14:45–52PubMedCrossRefGoogle Scholar
  52. Van Kampen J (1970) Shortening the breeding cycle in onions. Mededeling Proefstation voor de Groenteteelt in de Vollegrond, Alkmaar, p 51Google Scholar
  53. Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populationsGoogle Scholar
  54. Vijn I, Vandijken A, Luscher M, Bos A, Smeets E, Weisbeek P, Wiemken A, Smeekens S (1998) Cloning of sucrose—sucrose 1-fructosyltransferase from onion and synthesis of structurally defined fructan molecules from sucrose. Plant Physiol 117:1507–1513PubMedCentralPubMedCrossRefGoogle Scholar
  55. Wardyn BM, Edwards JW, Lamkey KR (2007) The genetic structure of a maize population: the role of dominance. Crop Sci 47:467–474CrossRefGoogle Scholar
  56. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875PubMedCrossRefGoogle Scholar
  57. Xiang L, Li X, Qin D, Guo F, Wu C, Miao L, Sun C (2012) Functional analysis of FLOWERING LOCUS T orthologs from spring orchid (Cymbidium goeringii Rchb. f.) that regulates the vegetative to reproductive transition. Plant Physiol Biochem 58:98–105PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Samantha Baldwin
    • 1
  • Roopashree Revanna
    • 1
  • Meeghan Pither-Joyce
    • 1
  • Martin Shaw
    • 1
  • Kathryn Wright
    • 1
  • Susan Thomson
    • 1
  • Leire Moya
    • 1
  • Robyn Lee
    • 2
  • Richard Macknight
    • 2
  • John McCallum
    • 1
  1. 1.New Zealand Institute for Plant and Food ResearchChristchurchNew Zealand
  2. 2.Biochemistry DepartmentUniversity of OtagoDunedinNew Zealand

Personalised recommendations