Advertisement

Theoretical and Applied Genetics

, Volume 127, Issue 1, pp 251–260 | Cite as

Multiple-line cross QTL mapping for biomass yield and plant height in triticale (× Triticosecale Wittmack)

  • Katharina V. Alheit
  • Lucas Busemeyer
  • Wenxin Liu
  • Hans Peter Maurer
  • Manje Gowda
  • Volker Hahn
  • Sigrid Weissmann
  • Arno Ruckelshausen
  • Jochen C. Reif
  • Tobias WürschumEmail author
Original Paper

Abstract

Key message

QTL mapping in multiple families identifies trait-specific and pleiotropic QTL for biomass yield and plant height in triticale.

Abstract

Triticale shows a broad genetic variation for biomass yield which is of interest for a range of purposes, including bioenergy. Plant height is a major contributor to biomass yield and in this study, we investigated the genetic architecture underlying biomass yield and plant height by multiple-line cross QTL mapping. We employed 647 doubled haploid lines from four mapping populations that have been evaluated in four environments and genotyped with 1710 DArT markers. Twelve QTL were identified for plant height and nine for biomass yield which cross-validated explained 59.6 and 38.2 % of the genotypic variance, respectively. A major QTL for both traits was identified on chromosome 5R which likely corresponds to the dominant dwarfing gene Ddw1. In addition, we detected epistatic QTL for plant height and biomass yield which, however, contributed only little to the genetic architecture of the traits. In conclusion, our results demonstrate the potential of genomic approaches for a knowledge-based improvement of biomass yield in triticale.

Keywords

Plant Height Biomass Yield Genotypic Variance Double Haploid Genetic Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was funded by the German Federal Ministry of Education and Research (BMBF) under the promotional reference 0315414A. This publication reflects the views only of the authors. We acknowledge the handling of the funding by the Project Management Organisation Jülich (PtJ). We thank Angela Harmsen for excellent technical assistance in the laboratory and Agnes Rölfing-Finze, Hans Häge, Jacek Till and Justus von Kittlitz for their outstanding work in the greenhouse and field.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The authors declare that the experiments comply with the current laws of Germany.

References

  1. Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Würschum T (2011) Detection of segregation distortion loci in triticale (× Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380PubMedCentralPubMedCrossRefGoogle Scholar
  2. Banaszak Z (2011) Breeding of triticale in DANKO. 61 Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs 2010, pp 65–68Google Scholar
  3. Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224PubMedCrossRefGoogle Scholar
  4. Börner A, Plaschke J, Korzun V, Worland AJ (1996) The relationships between the dwarfing genes of wheat and rye. Euphytica 89:69–75CrossRefGoogle Scholar
  5. Börner A, Korzun V, Malyshev S, Ivandic V, Graner A (1999a) Molecular mapping of two dwarfing genes differing in their GA response on chromosome 2H of barley. Theor Appl Genet 99:670–675PubMedCrossRefGoogle Scholar
  6. Börner A, Korzun V, Voylokov AV, Weber WE (1999b) Detection of quantitative trait loci on chromosome 5R of rye (Secale cereale L.). Theor Appl Genet 98:1087–1090CrossRefGoogle Scholar
  7. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  8. Busemeyer L, Ruckelshausen A, Möller K, Melchinger AE, Alheit KV, Maurer HP, Hahn V, Weissmann EA, Reif JC, Würschum T (2013a) Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation. Sci Rep 3:2442PubMedCentralPubMedCrossRefGoogle Scholar
  9. Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, Maurer HP, Reif JC, Würschum T, Müller J, Rahe F, Ruckelshausen A (2013b) Breedvision—a multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors (Switzerland) 13:2830–2847CrossRefGoogle Scholar
  10. Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625PubMedCrossRefGoogle Scholar
  11. Cochran WG, Cox GM (1957) Experimental designs. Wiley, New YorkGoogle Scholar
  12. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294PubMedGoogle Scholar
  13. Flintham JE, Börner A, Worland AJ, Gale MD (1997) Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci 128:11–25CrossRefGoogle Scholar
  14. Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in plant breeding 1. Butterworth, London, pp 1–35CrossRefGoogle Scholar
  15. Gilmour AR, Gogel BG, Cullis BR, Thompson R (2009) ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, HP1 1ES, UKGoogle Scholar
  16. Gowda M, Hahn V, Reif JC, Longin CFH, Alheit K, Maurer HP (2011) Potential for simultaneous improvement of grain and biomass yield in Central European winter triticale germplasm. Field Crops Res 121:153–157CrossRefGoogle Scholar
  17. Grieder C, Dhillon BS, Schipprack W, Melchinger AE (2012a) Breeding maize as biogas substrate in Central Europe: II. Quantitative-genetic parameters for inbred lines and correlations with testcross performance. Theor Appl Genet 124:981–988PubMedCrossRefGoogle Scholar
  18. Grieder C, Dhillon BS, Schipprack W, Melchinger AE (2012b) Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance. Theor Appl Genet 124:971–980PubMedCrossRefGoogle Scholar
  19. Herrmann M (2007) A diallel analysis of various traits in winter triticale. Plant Breed 126:19–23CrossRefGoogle Scholar
  20. Holland JB, Portyanko VA, Hoffman DL, Lee M (2002) Genomic regions controlling vernalization and photoperiod responses in oat. Theor Appl Genet 105:113–126PubMedCrossRefGoogle Scholar
  21. Ivandic V, Malyshev S, Korzun V, Graner A, Börner A (1999) Comparative mapping of a gibberellic acid-insensitive dwarfing gene (Dwf2) on chromosome 4HS in barley. Theor Appl Genet 98:728–731CrossRefGoogle Scholar
  22. Khan AS, Salim I, Ali Z (2003) Heritability of various morphological traits in wheat. Int J Agric Biol. doi: 1560-8530/2003/05-2-138-140 Google Scholar
  23. Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194CrossRefGoogle Scholar
  24. Korzun V, Melz G, Börner A (1996) RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.). Theor Appl Genet 92:1073–1077PubMedCrossRefGoogle Scholar
  25. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645PubMedCrossRefGoogle Scholar
  26. Kuleung C, Baenziger PS, Dweikat I (2004) Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet 108:1147–1150PubMedCrossRefGoogle Scholar
  27. Lancashire PD, Bleiholder H, van Boom TD, Langelüddeke P, Stauss R, Weber E, Witzenberger A (1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601CrossRefGoogle Scholar
  28. Lander ES, Botstein S (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185PubMedGoogle Scholar
  29. Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865CrossRefGoogle Scholar
  30. Liu W, Reif JC, Ranc N, Porta GD, Würschum T (2012) Comparison of biometrical approaches for QTL detection in multiple segregating families. Theor Appl Genet 125:987–998PubMedCrossRefGoogle Scholar
  31. Liu W, Maurer HP, Reif JC, Melchinger AE, Utz HF, Tucker MR, Ranc N, Della Porta G, Würschum T (2013) Optimum design of family structure and allocation of resources in association mapping with lines from multiple crosses. Heredity 110:71–79PubMedCrossRefGoogle Scholar
  32. Miedaner T, Hübner M, Koch S, Seggl A, Wilde P (2010) Biomass yield of self-incompatible germplasm resources and their testcrosses in winter rye. Plant Breed 129:369–375CrossRefGoogle Scholar
  33. Miedaner T, Müller BU, Piepho H-P, Falke KC (2011) Genetic architecture of plant height in winter rye introgression libraries. Plant Breed 130:209–216Google Scholar
  34. Miedaner T, Hübner M, Korzun V, Schmiedchen B, Bauer E, Haseneyer G, Wilde P, Reif JC (2012a) Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). BMC Genomics 13:706PubMedCentralPubMedCrossRefGoogle Scholar
  35. Miedaner T, Koch S, Seggl A, Schmiedchen B, Wilde P (2012b) Quantitative genetic parameters for selection of biomass yield in hybrid rye. Plant Breed 131:100–103CrossRefGoogle Scholar
  36. Möhring J, Piepho HP (2009) Comparison of weighting in two-stage analysis of plant breeding trials. Crop Sci 49:1977–1988CrossRefGoogle Scholar
  37. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler E (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202PubMedCentralPubMedCrossRefGoogle Scholar
  38. Oettler G (2005) The fortune of a botanical curiosity—Triticale: past, present and future. J Agric Sci 143:329–346CrossRefGoogle Scholar
  39. Oettler G, Tams SH, Utz HF, Bauer E, Melchinger AE (2005) Prospects for hybrid breeding in winter triticale: I. Heterosis and combining ability for agronomic traits in European elite germplasm. Crop Sci 45:1476–1482CrossRefGoogle Scholar
  40. Pronyk C, Mazza G (2011) Optimization of processing conditions for the fractionation of triticale straw using pressurized low polarity water. Bioresour Technol 102:2016–2025PubMedCrossRefGoogle Scholar
  41. R Development Core Team (2005) R: a language and environment for statistical computing, reference index version 2.x.x. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
  42. Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022PubMedCrossRefGoogle Scholar
  43. Rebaï A, Goffinet B (2000) More about quantitative trait locus mapping with diallel designs. Genet Res 75:243–247PubMedCrossRefGoogle Scholar
  44. Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292PubMedCrossRefGoogle Scholar
  45. Ren X, Sun D, Guan W, Sun G, Li C (2010) Inheritance and identification of molecular markers associated with a novel dwarfing gene in barley. BMC Genet 11:89PubMedCentralPubMedCrossRefGoogle Scholar
  46. SAS Institute (2008) SAS/STAT 9.2 User’s guide. SAS Institute Inc., Cary, NC, USAGoogle Scholar
  47. Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498PubMedCrossRefGoogle Scholar
  48. Schwegler DD, Liu W, Gowda M, Würschum T, Schulz B, Reif JC (2013) Multiple-line cross quantitative trait locus mapping in sugar beet (Beta vulgaris L.). Mol Breed 31:279–287CrossRefGoogle Scholar
  49. Steinhoff J, Liu W, Maurer HP, Würschum T, Longin CFH, Ranc N, Reif JC (2011) Multiple-line cross quantitative trait locus mapping in European elite maize. Crop Sci 51:2505–2516CrossRefGoogle Scholar
  50. Steinhoff J, Liu W, Maurer HP, Würschum T, Longin CFH, Ranc N, Reif JC (2012a) Exploitation of elite maize (Zea mays L.) germplasm across maturity zones. Crop Sci 52:1534–1542CrossRefGoogle Scholar
  51. Steinhoff J, Liu W, Reif JC, Porta GD, Ranc N, Würschum T (2012b) Detection of QTL for flowering time in multiple families of elite maize. Theor Appl Genet 125:1539–1551PubMedCrossRefGoogle Scholar
  52. Teich AH (1984) Heritability of grain yield, plant height and test weight of a population of winter wheat adapted to Southwestern Ontario. Theor Appl Genet 68:21–23PubMedGoogle Scholar
  53. Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849PubMedGoogle Scholar
  54. Verhoeven KJF, Jannink J-L, McIntyre LM (2006) Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity 96:139–149Google Scholar
  55. Williams E, Piepho H-P, Whitaker D (2011) Augmented p-rep designs. Biometr J 53:19–27Google Scholar
  56. Würschum T (2012) Mapping QTL for Agronomic traits in breeding populations. Theor Appl Genet 125:201–210PubMedCrossRefGoogle Scholar
  57. Würschum T, Liu W, Maurer HP, Abel S, Reif JC (2012a) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124:153–161PubMedCrossRefGoogle Scholar
  58. Würschum T, Tucker MR, Reif JC, Maurer HP (2012b) Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol 12:109PubMedCentralPubMedCrossRefGoogle Scholar
  59. Würschum T, Liu W, Gowda M, Maurer HP, Fischer S, Schechert A, Reif JC (2012c) Comparison of biometrical models for joint linkage association mapping. Heredity 108:332–340PubMedCrossRefGoogle Scholar
  60. Würschum T, Maurer HP, Dreyer F, Reif JC (2013) Effect of inter- and intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus L.). Theor Appl Genet 126:435–441PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Katharina V. Alheit
    • 1
  • Lucas Busemeyer
    • 2
  • Wenxin Liu
    • 3
  • Hans Peter Maurer
    • 1
  • Manje Gowda
    • 1
  • Volker Hahn
    • 1
  • Sigrid Weissmann
    • 4
  • Arno Ruckelshausen
    • 2
  • Jochen C. Reif
    • 5
  • Tobias Würschum
    • 1
    Email author
  1. 1.State Plant Breeding InstituteUniversity of HohenheimStuttgartGermany
  2. 2.Competence Centre of Applied Agricultural EngineeringUniversity of Applied Sciences OsnabrückOsnabrückGermany
  3. 3.Crop Genetics and Breeding DepartmentChina Agricultural UniversityBeijingChina
  4. 4.Saatzucht Dr. Hege GbR Domäne HohebuchWaldenburgGermany
  5. 5.Leibnitz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations