Theoretical and Applied Genetics

, Volume 126, Issue 12, pp 3091–3102 | Cite as

Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces

  • Kerstin Hofmann
  • Cristina Silvar
  • Ana M. Casas
  • Markus Herz
  • Bianca Büttner
  • M. Pilar Gracia
  • Bruno Contreras-Moreira
  • Hugh Wallwork
  • Ernesto Igartua
  • Günther Schweizer
Original Paper


Key message

In two Spanish barley landraces with outstanding resistance to scald, the Rrs1 Rh4 locus was fine mapped including all known markers used in previous studies and closely linked markers were developed.


Scald, caused by Rhynchosporium commune, is one of the most prevalent barley diseases worldwide. A search for new resistance sources revealed that Spanish landrace-derived lines SBCC145 and SBCC154 showed outstanding resistance to scald. They were crossed to susceptible cultivar Beatrix to create large DH-mapping populations of 522 and 416 DH lines that were scored for disease resistance in the greenhouse using two R. commune isolates. To ascertain the pattern of resistance, parents and reference barley lines with known scald resistance were phenotyped with a panel of differential R. commune isolates. Subpopulations were genotyped with the Illumina GoldenGate 1,536 SNP Assay and a large QTL in the centromeric region of chromosome 3H, known to harbour several scald resistance genes and/or alleles, was found in both populations. Five SNP markers closest to the QTL were converted into CAPS markers. These CAPS markers, together with informative SSR markers used in other scald studies, confirmed the presence of the Rrs1 locus. The panel of differential scald isolates indicated that the allele carried by both donors was Rrs1 Rh4 . The genetic distance between Rrs1 and its flanking markers was 1.2 cM (11_0010) proximally and 0.9 cM (11_0823) distally, which corresponds to a distance of just below 9 Mbp. The number and nature of scald resistance genes on chromosome 3H are discussed. The effective Rrs1 allele found and the closely linked markers developed are already useful tools for molecular breeding programs and provide a good step towards the identification of candidate genes.


Double Haploid Resistance Locus Double Haploid Line Double Haploid Population Commune Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Spanish barley core collection


South Australian Research and Development Institute


Barley oligonucleotid pool assay


Rhynchosporium secalis


Doubled haploid



This work was funded by the German BMELV and BLE through the project “Rhynchosporium secalis-resistance” in barley (project 28-1-41.009-06) and PLANT KBBE II “ExpResBar” AZ 0315702C and by the Spanish Ministry of Science and Innovation (projects GEN2006-28560-E, AGL2007-63625, RFP2012-00015-00-00 and PLANT KBBE “ExpResBar”, EUI2009-04075) and co-funded by the European Regional Development Fund. CS held an I3P contract from CSIC. BCM is supported by Fundación ARAID, Zaragoza, Spain. Barley-SSR markers were kindly provided by Andreas Graner and Marion Röder, IPK Gatersleben. Isolates UK7 and AU2 were kindly provided by W. Knogge, Leibnitz Institute for Plant Biochemistry, Halle. The authors would like to thank Alfred Barth and Alexandra Jestadt for the high level of commitment in the laboratory, greenhouse and field and Carlos P. Cantalapiedra for assistance in the work with the physical map of barley. The Grains Research and Development Corporation (GRDC) and SARDI funded the work in Australia.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2013_2196_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)
122_2013_2196_MOESM2_ESM.xls (2.1 mb)
Supplementary material 2 (XLS 2112 kb)
122_2013_2196_MOESM3_ESM.xlsx (19 kb)
Supplementary material 3 (XLSX 18 kb)
122_2013_2196_MOESM4_ESM.pptx (68 kb)
Supplementary material 4 (PPTX 68 kb)
122_2013_2196_MOESM5_ESM.docx (102 kb)
Supplementary material 5 (DOCX 101 kb)
122_2013_2196_MOESM6_ESM.docx (86 kb)
Supplementary material 6 (DOCX 86 kb)


  1. Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE (2010) Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes. MPMI 23:91–102PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Avrova A, Knogge W (2012) Rhynchosporium commune: a persistent threat to barley cultivation. Mol Plant Pathol 13:986–997PubMedCrossRefGoogle Scholar
  4. Ayres G, Owen H (1971) Resistance of barley varieties to establishment of subcuticular mycelia by Rhynchosporium secalis. Trans Br Mycol Soc 57:233–240CrossRefGoogle Scholar
  5. Baba T, Tanno K, Furusho M, Komatsuda T (2011) Allelic variation at the EF-G locus among northern Moroccan six-rowed barleys. Plant Genetic Resour: Charact Util 9:240–242CrossRefGoogle Scholar
  6. Behn A, Hartl L, Schweizer G, Wenzel G, Baumer M (2004) QTL mapping for resistance against non-parasitic leaf spots in a spring barley doubled haploid population. Theor Appl Genet 108:1229–1235PubMedCrossRefGoogle Scholar
  7. Bjørnstad Å, Patil V, Tekauz A, Marøy AG, Skinnes H, Jensen A, Magnus H, MacKey J (2002) Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines. I. Markers and differential isolates. Phytopathol 92:710–720CrossRefGoogle Scholar
  8. Casao MC, Igartua E, Karsai I, Lasa JM, Gracia MP, Casas AM (2011) Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days. J Exp Bot 6:1939–1949CrossRefGoogle Scholar
  9. Cheong J, Williams K, Wallwork H (2006) The identification of QTLs for adult plant resistance to leaf scald in barley. Aust J Agric Res 57:961–965CrossRefGoogle Scholar
  10. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582PubMedCrossRefGoogle Scholar
  11. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40PubMedCrossRefGoogle Scholar
  12. Dyck PL, Schaller CW (1961) Inheritance of resistance in barley to several physiologic races of the scald fungus. Can J Genet Cytol 3:153–164Google Scholar
  13. Garvin DF, Brown AHD, Raman H, Read BJ (2000) Genetic mapping of the barley Rrs14 scald resistance gene with RFLP, isozyme and seed storage protein markers. Plant Breed 119:193–196CrossRefGoogle Scholar
  14. Genger RK, Brown AHD, Knogge W, Nesbitt K, Burdon JJ (2003) Development of SCAR markers linked to a scald resistance gene derived from wild barley. Euphytica 134:149–159CrossRefGoogle Scholar
  15. Graner A, Tekauz A (1996) RFLP mapping of a dominant gene conferring resistance to scald (Rhynchosporium secalis). Theor Appl Genet 93:421–425PubMedCrossRefGoogle Scholar
  16. Grønnerød S, Marøy AG, MacKey I, Tekauz A, Penner GA, Bjørnstad A (2002) Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line ‘Abyssinian’ (CI668). Euphytica 126:235–250CrossRefGoogle Scholar
  17. Habgood MR, Hayes JD (1971) The inheritance of resistance to Rhynchosporium secalis in barley. Heredity 27:25–37CrossRefGoogle Scholar
  18. Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS (2009) Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119:1507–1522PubMedCrossRefGoogle Scholar
  19. Hillocks RJ (2012) Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot 31:85–93CrossRefGoogle Scholar
  20. IBSC International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716Google Scholar
  21. Igartua E, Gracia MP, Lasa JM, Medina B, Molina-Cano JL, Montoya JL, Romagosa I (1998) The Spanish barley core collection. Genet Resour Crop Ev 45:475–481CrossRefGoogle Scholar
  22. Igartua E, Moralejo M, Casas AM, Torres L, Molina-Cano JL (2013) Whole-genome analysis with SNPs from BOPA1 shows clearly defined groupings of Western Mediterranean, Ethiopian, and Fertile Crescent barleys. Genet Resour Crop Ev 60:251–264CrossRefGoogle Scholar
  23. Jackson LF, Webster RK (1976) Race differentiation, distribution, and frequency of Rhynchosporium secalis in California. Phytopathol 66:719–725CrossRefGoogle Scholar
  24. Jansen R, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedGoogle Scholar
  25. Jensen J, Backes G, Skinnes H, Giese H (2002) Quantitative trait loci for scald resistance in barley localized by a non-interval mapping procedure. Plant Breed 121:124–128CrossRefGoogle Scholar
  26. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  27. Langridge P, Karakousis A, Kretschmer J, Manning S, Chalmers K (1996) Molecular relationship between barley varieties. Accessed 26 Feb 2013
  28. Lasa JM (2008) Spanish barley core collection. Monografias INIA: Serie Agricola, n25. ISBN 978-84-7498-526-9Google Scholar
  29. Li HB, Zhou MX (2011) Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations. Mol Breed 27:479–490CrossRefGoogle Scholar
  30. Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theor Appl Genet 107:1021–1027PubMedCrossRefGoogle Scholar
  31. Liu ZW, Biyashev RM, Saghai Maroof MA (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876PubMedCrossRefGoogle Scholar
  32. Looseley ME, Newton AC, Atkins SD, Fitt BDL, Fraije B, Thomas WTB, Keith R, Lynott J, Harrap D (2012) Genetic basis of control of Rhynchosporium secalis infection and symptom expression in barley. Euphytica 184:47–56CrossRefGoogle Scholar
  33. Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezél J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263PubMedCrossRefGoogle Scholar
  34. Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249CrossRefGoogle Scholar
  35. Patil V, Bjørnstad A, Mackey J (2003) Molecular mapping of a new gene Rrs4 CI11549 for resistance to barley scald (Rhynchosporium secalis). Mol Breed 12:169–183CrossRefGoogle Scholar
  36. Paulitz TC, Steffenson BJ (2011) Biotic stress in barley: disease problems and solutions. In: Ullrich SE (ed) Barley: production, improvement and uses. Blackwell Publishing Ltd, London, pp 307–354Google Scholar
  37. Penner GA, Tekauz A, Reimer E, Scoles GJ, Rossnagel BG, Eckstein PE, Legge WG, Burnett PA, Ferguson T, Helm JF (1996) The genetic basis of scald resistance in western Canadian barley cultivars. Euphytica 92:367–374CrossRefGoogle Scholar
  38. Phillips D, Nibau C, Ramsay L, Waugh R, Jenkins G (2010) Development of a molecular cytogenetic recombination assay for barley. Cytogenet Genome Res 129:154–161PubMedCrossRefGoogle Scholar
  39. Pickering R, Ruge-Wehling B, Johnston PA, Schweizer G, Ackermann P, Wehling P (2006) The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed 125:576–579CrossRefGoogle Scholar
  40. Ponce-Molina LJ, Casas AM, Gracia MP, Silvar C, Mansour E, Thomas WBT, Schweizer G, Herz M, Igartua E (2012) Quantitative trait loci and candidate loci for heading date in a large population of a wide barley cross. Crop Sci 52:2469–2480CrossRefGoogle Scholar
  41. Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedGoogle Scholar
  42. Read BJ, Macdonald AF (1991) Hordeum vulgare (barley) cv. Yerong. Aust J Exp Agric 31:866CrossRefGoogle Scholar
  43. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson J, Wanamaker S, Walia H, Rodriguez E, Hedley P, Liu H, Morris J, Close T, Marshall D, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Gen Genomics 274:515–527CrossRefGoogle Scholar
  44. Sayed H, Kayyal H, Ramsay L, Ceccarelli S, Baum M (2002) Segregation distortion in doubled haploid lines of barley (Hordeum vulgare L.) detected by simple sequence repeat (SSR). Euphytica 225:265–272CrossRefGoogle Scholar
  45. Schweizer GF, Baumer M, Daniel G, Rugel H, Röder MS (1995) RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90:920–924PubMedCrossRefGoogle Scholar
  46. Schweizer G, Herz M, Mikolajewski S, Brenner M, Hartl L, Baumer M (2004) Genetic mapping of a novel scald resistance gene Rrs15 CI8288 in barley. In: Proceedings of 9th Int Barley Genet Symposium, Brno, Czech Republic, 20–26 June 2004, pp 258–265Google Scholar
  47. Shipton WA, Boyd WJR, Ali SM (1974) Scald of Barley. Rev Plant Pathol 53:839–861Google Scholar
  48. Silvar C, Casas AM, Kopahnke D, Habekuß A, Schweizer G, Gracia MP, Lasa JM, Ciudad FJ, Molina-Cano JL, Igartua E, Ordon F (2010) Screening the Spanish barley core collection for disease resistance. Plant Breed 129:45–52CrossRefGoogle Scholar
  49. Silvar C, Casas AM, Igartua E, Ponce-Molina LJ, Gracia MP, Schweizer G, Herz M, Flath K, Waugh R, Kopahnke D, Ordon F (2011) Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theor Appl Genet 123:1019–1028PubMedCrossRefGoogle Scholar
  50. Starling TM, Roane CW, Chi KR (1971) Inheritance of reaction to Rhynchosporium secalis in winter barley cultivars. In: Proceedings of 2nd Int Barley Genetics Symposium, Pullman, WA, pp 513–519Google Scholar
  51. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefGoogle Scholar
  52. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  53. Thirugnanasambandam A, Wright KM, Atkins SD, Whisson SC, Newton AC (2011) Infection of Rrs1 barley by an incompatible race of the fungus Rhynchosporium secalis expressing the green fluorescent protein. Plant Pathol 60:513–521CrossRefGoogle Scholar
  54. Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR, Lance RCM (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047PubMedGoogle Scholar
  55. van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, WageningenGoogle Scholar
  56. van Ooijen JW (2006) JoinMap 4, software for the calculation of genetics linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  57. Varshney RK, Grosse I, Hähnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250PubMedCrossRefGoogle Scholar
  58. Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103PubMedCrossRefGoogle Scholar
  59. von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590CrossRefGoogle Scholar
  60. VSN International (2011) Genstat for Windows 14th edn. VSN International, Hemel Hempstead, UK Accessed 03 Oct 2011
  61. Wagner C, Schweizer G, Krämer M, Dehmer-Badani AG, Ordon F, Friedt W (2008) The complex quantitative barley—Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet 118:113–122PubMedCrossRefGoogle Scholar
  62. Wallwork H, Grcic M (2011) The use of differential isolates of Rhynchosporium secalis to identify resistance to leaf scald in barley. Aust Plant Pathol 40:490–496CrossRefGoogle Scholar
  63. Williams KJ, Bogacki P, Scott L, Karakousis A, Wallwork H (2001) Mapping a gene for scald resistance in barley Line ‘B87/14’ and validation of microsatellite and RFLP markers for marker-assisted selection. Plant Breed 120:301–304CrossRefGoogle Scholar
  64. Xi K, Xue AG, Burnett PA, Helm JH, Turkington TK (2000) Quantitative resistance of barley cultivars to Rhynchosporium secalis. Can J Plant Pathol 22:221–227CrossRefGoogle Scholar
  65. Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KB, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45:2563–2572CrossRefGoogle Scholar
  66. Zaffarano PL, McDonald BA, Linde CC (2011) Two new species of Rhynchosporium. Mycologia 103:195–202PubMedCrossRefGoogle Scholar
  67. Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC (2008) Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathol 57:01–14Google Scholar
  68. Zhan J, Yang L, Zhu W, Shang L, Newton AC (2012) Pathogen populations evolve to greater race complexity in agricultural systems—evidence from analysis of Rhynchosporium secalis virulence data. PLoS One 6:e38611CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kerstin Hofmann
    • 1
  • Cristina Silvar
    • 2
    • 3
  • Ana M. Casas
    • 3
  • Markus Herz
    • 1
  • Bianca Büttner
    • 1
  • M. Pilar Gracia
    • 3
  • Bruno Contreras-Moreira
    • 3
    • 4
  • Hugh Wallwork
    • 5
    • 6
  • Ernesto Igartua
    • 3
  • Günther Schweizer
    • 1
  1. 1.Bavarian State Research Center for AgricultureInstitute for Crop Science and Plant BreedingFreisingGermany
  2. 2.Department of Animal and Plant Biology and EcologyUniversity of CoruñaA CoruñaSpain
  3. 3.Department of Genetics and Plant ProductionAula Dei Experimental Station, CSICZaragozaSpain
  4. 4.Fundación ARAIDZaragozaSpain
  5. 5.Plant Research CentreSouth Australian Research and Development Institute, SARDIUrrbraeAustralia
  6. 6.School of Agriculture, Food and WineUniversity of AdelaideUrrbraeAustralia

Personalised recommendations