Theoretical and Applied Genetics

, Volume 126, Issue 12, pp 2957–2968 | Cite as

Molecular characterization of Als1, an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean

  • Cecilia Ghio
  • María Laura Ramos
  • Emiliano Altieri
  • Mariano Bulos
  • Carlos A. Sala
Original Paper


Key message

The AHAS gene family in soybean was characterized. The locus Als1 for sulfonylurea resistance was mapped and the resistant allele was characterized at the molecular level.


Sulfonylurea (SU) resistance in soybean is controlled by Als1, a semi-dominant allele obtained by EMS mutagenesis over the cultivar Williams 82. The overall objective of this research was to map Als1 in the soybean genome and to determine the nucleotidic changes conferring resistance to SU. Four nucleotide sequences (GmAhas1–4) showing high homology with the Arabidopsis thaliana acetohydroxyacid synthase (AHAS, EC gene sequence were identified by in silico analysis, PCR-amplified from the SU-resistant line BTK323STS and sequenced. Expression analysis showed that GmAhas1, located on chromosome 4 by in silico analysis, is the most expressed sequence in true leaves. F2:3 families derived from the cross between susceptible and resistant lines were evaluated for SU resistance. Mapping results indicate that the locus als1 is located on chromosome 4. Sequence comparison of GmAhas1 between BTK323STS and Williams 82 showed a single nucleotide change from cytosine to thymine at position 532. This transversion generates an amino acid change from proline to serine at position 197 (A. thaliana nomenclature) of the AHAS catalytic subunit. An allele-specific marker developed for the GmAhas1 mutant sequence cosegregated with SU resistance in the F2 population. Taking together, the mapping, expression and sequencing results indicate that the GmAhas1 sequence corresponds to the Als1 gene sequence controlling SU resistance in soybean. The molecular breeding tools described herein create the basis to speed up the identification of new mutations in soybean AHAS leading to enhanced levels of resistance to SU or to other families of AHAS inhibitor herbicides.


Glyphosate True Leaf Soybean Genome Weed Population Soybean Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Conflict of interest

The experiments described in this paper comply with the current laws of Argentina. The authors declare that they have no conflict of interest.


  1. Anderson AH, Simmons FW (2004) Use of the sulfonylurea-tolerant soybean trait to reduce soybean response to prosulfuron soil residues. Weed Technol 18(3):521–526CrossRefGoogle Scholar
  2. Ascenzi R, Birk I, Ortlip C, Howie W, Pozniak C, Menard C, O’Donoughue L, Parker G, Hucl P, Singh BK (2003) Characterization and mapping of the acetohydroxyacid synthase genes of Triticum aestivum L. and the development of wheat varieties resistant to imidazolinone herbicides. In: Proceedings of the 7th International Congress of Plant Molecular Biology, Barcelona, Spain, 23–28 JuneGoogle Scholar
  3. Beyer JREM, Duffy MJ, Hay JV, Schlueter DD (1988) Sulfonylureas. In: Kearney PC, Kaufmann DD (eds) Herbicides: chemistry, degradation and mode of action. Dekker, New York, pp 117–189Google Scholar
  4. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691CrossRefPubMedGoogle Scholar
  5. Santone WD, Cairo, C, Sala CA, Rossi R (2013) Pleiotropic effects of the allele for sulfonylurea tolerance, Als1, on soybean (Glycine max (L) Merr.). In: Proc. IX World Soybean Research Conference, Durban, South Africa.
  6. Cannon SB, Shoemaker RC (2012) Evolutionary and comparative analyses of the soybean genome. Breed Sci 61:437–444CrossRefPubMedGoogle Scholar
  7. Cui HL, Zhang CX, Wei SH, Zhang HJ, Li XJ, Zhang YQ, Wang GQ (2011) Acetolactate synthase gene proline (197) mutations confer tribenuron-methyl resistance in flixweed (Descurainia sophia) populations from China. Weed Sci 59:376–379CrossRefGoogle Scholar
  8. Cui HI, Li X, Wang G, Wang J, Wei S, Cao H (2012) Acetolactate synthase proline (197) mutations confer tribenuron-methyl resistance in Capsella bursa-pastoris populations from China. Pestic Biochem Phys 102:229–232CrossRefGoogle Scholar
  9. Cusack BP, Wolfe KH (2007) When gene marriages don’t work out: divorce by subfunctionalization. Trends Genet 23:270–272CrossRefPubMedGoogle Scholar
  10. Dellaporta S, Wood L, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  11. Dewaele E, Forlani G, Degrande D, Nielsen E, Rambour S (1997) Biochemical characterization of chlorsulfuron resistance in Cichorium intybus L. var. Witloof J Plant Physiol 151:109–114CrossRefGoogle Scholar
  12. Doyle JJ, Egan AN (2010) Dating the origins of polyploidy events. New Phytol 186:73–85CrossRefPubMedGoogle Scholar
  13. Duggleby RG, Pang SS (2000) Acetohydroxyacid synthase. J Biochem Mol Biol 33:1–36Google Scholar
  14. Fang LY, Gross PR, Chen PH, Lillis M (1992) Sequence of two acetohydroxyacid synthases genes from Zea mays. Plant Mol Biol 18:1185–1187CrossRefPubMedGoogle Scholar
  15. Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–931CrossRefGoogle Scholar
  16. Goodstein DM, Shenggiang S, Russell H, Neupane R, Hays RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsor D (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186CrossRefGoogle Scholar
  17. Green JM, Hazel CB, Forney R, Pugh LM (2008) New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate. Pest Manag Sci 64:332–339CrossRefPubMedGoogle Scholar
  18. Gressel J, Siegel A (1990) Modeling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Tech 4:186–198Google Scholar
  19. Grula JW, Hudspeth RL, Hobbs SL, Anderson DM (1995) Organization, inheritance and expression of acetohydroxyacid synthase genes in the cotton allotetraploid Gossypium hirsutum. Plant Mol Biol 28:837–846CrossRefPubMedGoogle Scholar
  20. Guttieri MJ, Eberlein CV, Thill DC (1995) Diverse mutations in the acetolactate synthase gene confer clorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci 43:175–178Google Scholar
  21. Hattori J, Rutledge R, Labbé H, Brown D, Sunohara G, Miki B (1992) Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxyacid synthase gene with separate mutations for selective resistance. Mol Gen Genet 232:167–173PubMedGoogle Scholar
  22. Heap I (2013) The international survey of herbicide resistant weeds. Online publication available at
  23. Hurles M (2004) Gene duplication: the genomic trade in spare parts. PLoS Biol 2:e206CrossRefPubMedGoogle Scholar
  24. Hyten DL, Choi I, Song Q, Specht JE, Carter TE, Shoemaker RC, Hwang EY, Matukumalli LK, Cregan PB (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968CrossRefGoogle Scholar
  25. Intanon S, Perez-Jones A, Hulting AG, Mallory-Smith CA (2011) Multiple Pro197 ALS substitutions endow resistance to ALS inhibitors within and among mayweed chamomile populations. Weed Sci 59:431–437CrossRefGoogle Scholar
  26. Ishimoto M, Harada K (2012) Breeding Science Issue: soybean breeding genomic era. Breed Sci 61:435CrossRefPubMedGoogle Scholar
  27. Jin T, Liu J, Huan Z, Wu C, Bi Y, Wang J (2011) Molecular basis for resistance to tribenuron in shepherd’s purse (Capsella bursa-pastoris (L.) Medik.). Pestic Biochem Phys 100:160–164CrossRefGoogle Scholar
  28. Kolkman JM, Slabaugh MB, Bruniard JM, Berry S, Bushman BS, Olungu C, Maes N, Abratti G, Zambelli A, Miller JF, Leon A, Knapp SJ (2004) Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor Appl Genet 109:1147–1159CrossRefPubMedGoogle Scholar
  29. Krysiak M, Gawronski SW, Adamczewski K, Kierzek R (2011) ALS gene mutations in Apera spica-venti confer broad-range resistance to herbicides. J Plant Prot Res 51:261–267Google Scholar
  30. Lander ES, Green P, Abrahamson J (1987) MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural population. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  31. Masuda T, Goldsmith PD (2009) World soybean production: area harvested, yield, and long-term projections. Int Food Agribus Manag Rev 12:153Google Scholar
  32. Mazur BJ, Chui CF, Smith JK (1987) Isolation and characterization of plant genes coding for acetolactate synthase the target enzyme for two classes of herbicide. Plant Physiol 85:1110–1117CrossRefPubMedGoogle Scholar
  33. McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG (2006) Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci 103:569–573CrossRefPubMedGoogle Scholar
  34. Michelmore R, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS 88:9828–9832CrossRefPubMedGoogle Scholar
  35. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128CrossRefPubMedGoogle Scholar
  36. Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, Webster TM, Bradley KW, Frisvold G, Powles SB, Burgos NR, Witt WW, Barrett M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 31–62 (2012 Special Issue). doi: 10.1614/WS-D-11-00155.1
  37. Ouellet T, Rutledge RG, Miki BL (1992) Members of the acetohydroxydacid synthase multigene family of Brassica napus have divergent patterns of expression. Plant J 2:321–330PubMedGoogle Scholar
  38. Park KW, Mallory Smith CA (2004) Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res 44:71–77CrossRefGoogle Scholar
  39. Powles S (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360–365CrossRefPubMedGoogle Scholar
  40. Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347CrossRefPubMedGoogle Scholar
  41. Rossi R (2012) Historia del mejoramiento genético de la soja en la Argentina. In: Baigorri HEJ, Salado Navarro LR (eds) El cultivo de Soja en Argentina, 1st edn. Agroeditorial, Vicente López, pp 33–50Google Scholar
  42. Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge RW, Jackson SA (2012) The fate of duplicated genes in a polyploid plant genome. Plant J 73:143–153CrossRefGoogle Scholar
  43. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  44. Rutledge RG, Quellet T, Hattori J, Miki BL (1991) Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol Gen Genet 229:31–40CrossRefPubMedGoogle Scholar
  45. Sala CA, Bulos M, Altieri E, Weston B (2012) Response to imazapyr and dominance relationships of two imidazolinone-resistant alleles at the Ahasl1 locus of sunflower. Theor Appl Genet 124:385–396CrossRefPubMedGoogle Scholar
  46. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, New York. ISBN 0-87969-309-6Google Scholar
  47. Sathasivan K, Haughn GW, Murai N (1991) Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var Columbia. Plant Physiol 97:1044–1050CrossRefPubMedGoogle Scholar
  48. Scarabel L, Carraro N, Sattin M, Varotto S (2004) Molecular basis and genetic characterization of evolved resistance to ALS-inhibitors in Papaver rhoeas. Plant Sci 166:703–709CrossRefGoogle Scholar
  49. Schlueter JA, Lin JY, Schlueter SD, Vasylenko-Sanders IF, Deshpande S, Yi J, O’Bleness M, Roe BA, Nelson RT, Scheffler BE (2007) Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics 8:330CrossRefPubMedGoogle Scholar
  50. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010) Genome sequence of paleopolyploid soybean. Nature 463:178–183CrossRefPubMedGoogle Scholar
  51. Sebastian SA, Fader GM, Ulrich JF, Forney DR, Chaleff RS (1989) Semidominant soybean mutation for resistance to sulfonylurea herbicide. Crop Sci 29:1403–1408CrossRefGoogle Scholar
  52. Severin AJ, Cannon SB, Graham MM, Grant D, Shoemaker RC (2011) Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy. Plant Cell 23:3129–3136CrossRefPubMedGoogle Scholar
  53. Shaner DL (1991) Mechanisms of resistance to acetolactate synthase/acetohydroxyacid synthase inhibitors. In: Proceedings of the Western Society of Weed Science, pp 122–125Google Scholar
  54. Shaner DL (2000) The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag Sci 56:320–326CrossRefGoogle Scholar
  55. Sibony M, Michel A, Haas HU, Rubin B, Hurle K (2001) Sulfometuron resistant Amaranthus retroflexus: cross resistance and molecular basis for resistance to acetolactate synthase inhibiting herbicides. Weed Res 41:509–522CrossRefGoogle Scholar
  56. Sikdar MSI, Kim JS (2010) Functional analysis of a gene encoding threonine synthase from rice. Afr J Biotechnol 9:1122–1129Google Scholar
  57. Simpson DM, Stoller EW (1996) Thifensulfuron and imazethapyr interaction at the ALS enzyme in sulfonylurea-tolerant soybean (Glycine max). Weed Sci 44:763–768Google Scholar
  58. Singh BK (1999) Biosynthesis of valine, leucine and isoleucine. In: Singh BK (ed) Plant amino acids. Marcel Dekker, New York, pp 227–247Google Scholar
  59. Tal A, Rubin B (2004) Occurrence of resistant Chrysanthemum coronarium to ALS inhibiting herbicides in Israel. Resist Pest Manag Newslett 13:31–33Google Scholar
  60. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedGoogle Scholar
  61. Tranel PJ, Wright TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700–712CrossRefGoogle Scholar
  62. Uchino A, Watanabe H (2002) Mutations in the acetolactate synthase genes of sulfonylurea-resistant biotypes of Lindernia spp. Weed Biol Manag 2:104–109CrossRefGoogle Scholar
  63. Uchino A, Ogata S, Kohara H, Yoshida S, Yoshioka T, Watanabe H (2007) Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides. Weed Biol Manag 7:89–96CrossRefGoogle Scholar
  64. Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:533–606CrossRefGoogle Scholar
  65. Vila-Aiub MM, Vidal RA, Balbi MC, Gundel PE, Trucco F, Ghersa CM (2008) Glyphosate-resistant weeds of South American cropping systems: an overview. Pest Manag Sci 64:366–371CrossRefPubMedGoogle Scholar
  66. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  67. Wang G, Lin Y, Li W, Ito M, Itoh K (2004) A mutation confers Monochoria vaginalis resistance to sulfonylureas that target acetolactate synthase. Pestic Biochem Physiol 80:43–46CrossRefGoogle Scholar
  68. Warwick SI, Sauder C, Beckie HJ (2005) Resistance in Canadian biotypes of wild mustard (Sinapis arvensis) to acetolactate synthase inhibiting herbicides. Weed Sci 53:631–639CrossRefGoogle Scholar
  69. Wiersma PA, Schmiemann MG, Condie JA, Crosby WL, Moloney MM (1989) Isolation, expression and phylogenetic inheritance of an acetolactate synthase gene from Brassica napus. Mol Gen Genet 219:413–420CrossRefPubMedGoogle Scholar
  70. Wright T, Penner D (1998) Cell selection and inheritance of imidazolinone resistance in sugar beet (Beta vulgaris). Theor Appl Genet 96:612–620CrossRefGoogle Scholar
  71. Wright TR, Bascomb NF, Sturner SF, Penner D (1998) Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci 46:13–23Google Scholar
  72. Wrubel RP, Gressel J (1994) Are herbicide mixtures useful for delaying evolution of resistance? A case study. Weed Tech 8:635–648Google Scholar
  73. Yu Q, Zhang XQ, Hashem A, Walsh MJ, Powles SB (2003) ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Sci 51:831–838CrossRefGoogle Scholar
  74. Yu Q, Nelson JK, Zheng MQ, Jackson M, Powles SB (2007) Molecular characterization of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag Sci 63:918–927CrossRefPubMedGoogle Scholar
  75. Yu Q, Han H, Powles SB (2008) Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag Sci 64:1229–1236CrossRefPubMedGoogle Scholar
  76. Zheng D, Kruger GR, Singh S, Davis VM, Tranel PJ, Weller SC, Johnson WG (2011) Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Pest Manag Sci 67:1486–1492CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cecilia Ghio
    • 1
  • María Laura Ramos
    • 2
  • Emiliano Altieri
    • 2
  • Mariano Bulos
    • 2
  • Carlos A. Sala
    • 2
  1. 1.Soybean Breeding ProgramNIDERA S.A.TucumánArgentina
  2. 2.Biotechnology DepartmentNIDERA S.A.Venado TuertoArgentina

Personalised recommendations