Advertisement

Theoretical and Applied Genetics

, Volume 126, Issue 10, pp 2451–2465 | Cite as

Increasing the density of markers around a major QTL controlling resistance to angular leaf spot in common bean

  • Paula Rodrigues OblessucEmail author
  • Juliana Morini Kupper Cardoso Perseguini
  • Renata Moro Baroni
  • Alisson Fernando Chiorato
  • Sérgio Augusto Morais Carbonell
  • Jorge Mauricio Costa Mondego
  • Ramon Oliveira Vidal
  • Luis Eduardo Aranha Camargo
  • Luciana Lasry Benchimol-Reis
Original Paper

Abstract

Angular leaf spot (ALS) causes major yield losses in the common bean (Phaseolus vulgaris L.), an important protein source in the human diet. This study describes the saturation around a major quantitative trait locus (QTL) region, ALS10.1, controlling resistance to ALS located on linkage group Pv10 and explores the genomic context of this region using available data from the P. vulgaris genome sequence. DArT-derived markers (STS-DArT) selected by bulk segregant analysis and SCAR and SSR markers were used to increase the resolution of the QTL, reducing the confidence interval of ALS10.1 from 13.4 to 3.0 cM. The position of the SSR ATA220 coincided with the maximum LOD score of the QTL. Moreover, a new QTL (ALS10.2UC) was identified at the end of the same linkage group. Sequence analysis using the P. vulgaris genome located ten SSRs and seven STS-DArT on chromosome 10 (Pv10). Coincident linkage and genome positions of five markers enabled the definition of a core region for ALS10.1 spanning 5.3 Mb. These markers are linked to putative genes related to disease resistance such as glycosyl transferase, ankyrin repeat-containing, phospholipase, and squamosa-promoter binding protein. Synteny analysis between ALS10.1 markers and the genome of soybean suggested a dynamic evolution of this locus in the common bean. The present study resulted in the identification of new candidate genes and markers closely linked to a major ALS disease resistance QTL, which can be used in marker-assisted selection, fine mapping and positional QTL cloning.

Keywords

Quantitative Trait Locus Linkage Group Common Bean Quantitative Trait Locus Region Major Quantitative Trait Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Dr. Phil McClean for allowing the usage of the bean genome sequence assembly data from Phytozome. PRO received a fellowship from São Paulo Research Foundation-FAPESP (2009/02411-2). This work was supported by São Paulo Research Foundation-FAPESP (2010/51673-7).

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

122_2013_2146_MOESM1_ESM.docx (22 kb)
Scaffold00383 from Phytozome v0.9 database with the physical position of the markers PvM13 and IAC137. An approximated distance of 3.0 kb between the two clusters of each marker can be observed, as well as the E value for each marker alignment with the bean genome. At the bottom are the transcripts predicted for this region. Supplementary material 1 (DOCX 21 kb)
122_2013_2146_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 21 kb)
122_2013_2146_MOESM3_ESM.tif (137 kb)
Supplementary material 3 (TIF Image 138 kb)
122_2013_2146_MOESM4_ESM.docx (23 kb)
Supplementary material 4 (DOCX 22 kb)

References

  1. Allorent D, Savary S (2005) Epidemiological characteristics of angular leaf spot of bean: a systems analysis. Eur J Plant Pathol 113:329–341. doi: 10.1007/s10658-005-4038-y CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186. doi: 10.1139/g93-024 PubMedCrossRefGoogle Scholar
  4. Antico CJ, Colon C, Banks T, Ramonell KM (2012) Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front Biol 7:48–56. doi: 10.1007/s11515-011-1171-1 CrossRefGoogle Scholar
  5. Benchimol LL, Campos T, Carbonell SAM, Colombo CA, Chioratto AF, Formighieri EF, Gouvea LRL, Souza AP (2007) Structure of genetic diversity among common bean (Phaseolus vulgaris L.) varieties of Mesoamerican and Andean origins using new developed microsatellite markers. Genet Res Crop Evol 54:1747–1762. doi: 10.1007/s10722-006-9184-3 CrossRefGoogle Scholar
  6. Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374. doi: 10.1007/s00122-003-1398-6 PubMedCrossRefGoogle Scholar
  7. Blair MW, Buendía HF, Giraldo MC, Métais I, Peltier D (2008) Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:91–103. doi: 10.1007/s00122-008-0879-z PubMedCrossRefGoogle Scholar
  8. Briñez B, Blair MW, Kilian A, Carbonell SAM, Chiorato AF, Rubiano LB (2012) A whole genome DArT assay to assess germplasm collection diversity in common beans. Mol Breed 30:181–193. doi: 10.1007/s11032-011-9609-3 CrossRefGoogle Scholar
  9. Broughton WJ, Hernández G, Blair MW, Beebe S (2003) Beans (Phaseolus spp.) - Model food legumes. Plant Soil 252:55–128. doi: 10.1023/A:1024146710611 CrossRefGoogle Scholar
  10. Caixeta ET, Borém A, Kelly JD (2005) Development of microsatellite markers based on BAC common bean clones. Crop Breed App Biotechnol 5:125–133Google Scholar
  11. Campos T, Oblessuc PR, Sforça DA, Cardoso JMK, Baroni RM, Benchimol LL, Carbonell SAM, Chioratto AF, Garcia AAF, Souza AP (2011) Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L.). Mol Breed 27:549–560. doi: 10.1007/s11032-010-9453-x CrossRefGoogle Scholar
  12. Caño-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34:351–362. doi: 10.1046/j.1365-313X.2003.01729.x PubMedCrossRefGoogle Scholar
  13. Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6:13–18. doi: 10.4161/psb.6.1.14037 PubMedCrossRefGoogle Scholar
  14. Cardoso JMK, Oblessuc PR, de Campos T, Sforça DA, Carbonell SAM, Chioratto AF, Formighieri EF, Souza AP, Benchimol LL (2008) New microsatellite markers developed from an enriched microsatellite common bean library. Pesq Agrop Brasil 43:929–936. doi: 10.1590/S0100-204X2008000700019 CrossRefGoogle Scholar
  15. Carvalho GA, Paula TJ, Alzate-Marin AL, Nietsche S, Barros EG, Moreira MA (1998) Inheritance of resistance to angular leaf spot of common bean in AND 277 to race 63–23 of Phaeoisariopsis griseola and identification of a RAPD marker linked to the resistance gene. Brazil Phytopathol 23:482–485Google Scholar
  16. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572. doi: 10.1098/rstb.2007.2170 PubMedCrossRefGoogle Scholar
  17. Corrêa RX, Pedro IV, Oliveira MLP, Nietsche S, Moreira M, Barros EG (2001) Herança da resistência a mancha angular do feijoeiro e aientificação de marcadores moleculares flanqueando o loco de resistência. Brazil Phytopathol 26:27–32Google Scholar
  18. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317. doi: 10.1016/S0022-2836(03)00307-3 PubMedCrossRefGoogle Scholar
  19. Creste S, Tulmann A, Figueira A (2001) Detection of single sequence repeat polymorphism in denaturating polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306. doi: 10.1007/BF02772828 CrossRefGoogle Scholar
  20. Crous PW, Liebenberg MM, Braun U, Groenewald JZ (2006) Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Stud Mycol 55:163–173. doi: 10.3114/sim.55.1.163 PubMedCrossRefGoogle Scholar
  21. CYTED, Ibero-American programme for science, technology and development http://www.cyted.org/. Accessed 26 June 2012
  22. Davis JW, Kean D, Yorgey B, Fourie D, Miklas PN, Myers JR (2006) A molecular marker linkage map of snap bean (Phaseolus vulgaris). Ann Rep Bean Improv Coop 49:73–74Google Scholar
  23. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant pathogen interactions. Nat Rev Genet 1:539–548. doi: 10.1038/nrg2812 CrossRefGoogle Scholar
  24. Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566. doi: 10.1105/tpc.002022 PubMedCrossRefGoogle Scholar
  25. Fonsêca A, Ferreira J, dos Santos TRB, Mosiolek M, Bellucci E, Kami J, Gepts P, Geffroy V, Schweizer D, dos Santos KGB, Pedrosa-Harand A (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.). Chrom Res 18:487–502. doi: 10.1007/s10577-010-9129-8 PubMedCrossRefGoogle Scholar
  26. Funada M, Helms TC, Hammond JJ, Hossain K, Doetkott C (2012) Single-seed descent, single-pod, and bulk sampling methods for soybean. Euphytica. doi: 10.1007/s10681-012-0837-3 Google Scholar
  27. Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris). Crop Sci 42:2128–2136. doi: 10.2135/cropsci2002.2128 CrossRefGoogle Scholar
  28. Gepts P, Lin D (2011) PhaseolusGenes: bean breeder’s molecular marker toolbox. Available at http://phaseolusgenes.bioinformatics.ucdavis.edu (verified 10 June 2012). U.C. Davis Bioinformatics Core, Univ. of California, Davis, CA
  29. Gepts P, Moore PH, Ming R, et al (2008) Genomics of tropical crop plants. Genomics of Phaseulos beans, a maijor source of dietary protein and micronutrients in the tropics. In: Moore PH and Ming R (eds) Plant genetics and genomics: crops and models. Springer, New York, pp 113–143. doi: 10.1007/978-0-387-71219-2_5
  30. Golegaonkar PG, Karaoglu H, Park RF (2009) Molecular mapping of leaf rust resistance gene Rph14 in Hordeum vulgare. Theor Appl Genet 119:1281–1288. doi: 10.1007/s00122-009-1132-0 PubMedCrossRefGoogle Scholar
  31. Gonçalves-Vidigal MC, Cruz AS, Garcia A, Kami J, Vidigal Filho PS, Sousa LL, McClean P, Gepts P, Pastor-Corrales MA (2011) Linkage mapping of the Phg-1 and Co-14 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277. Theor Appl Genet 122:893–903. doi: 10.1007/s00122-010-1496-1 PubMedCrossRefGoogle Scholar
  32. Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007) Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558. Genet Mol Res 6:691–706PubMedGoogle Scholar
  33. Hamann T, Bennett M, Mansfield J, Somerville C (2009) Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant J 57:1015–1026. doi: 10.1111/j.1365-313X.2008.03744.x PubMedCrossRefGoogle Scholar
  34. Hanai LR, Campos T, Camargo LEA, Benchimol LL, Souza AP, Melloto M, Carbonell SAM, Chioratto AF, Consoli L, Formighieri EF, Siqueira M, Tsai SM, Vieira MLC (2007) Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome 50:266–277. doi: 10.1139/G07-007 PubMedCrossRefGoogle Scholar
  35. Hanai LR, Santini L, Camargo LEA, Fungaro MHP, Gepts P, Tsai SM, Vieira MLC (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breed 25:25–45. doi: 10.1007/s11032-009-9306-7 PubMedCrossRefGoogle Scholar
  36. He X-J, Mu R-L, Cao W-H, Zhang Z-G, Zhang J-S, Chen S-Y (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916. doi: 10.1111/j.1365-313X.2005.02575.x PubMedCrossRefGoogle Scholar
  37. Hernández-Blanco C, Feng DX, Hu J et al (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890–903. doi: 10.1105/tpc.106.048058 PubMedCrossRefGoogle Scholar
  38. Hickey LT, Lawsonb W, Platzb GJ, Fowlerb RA, Ariefa V, Dietersa M, Germánc S, Fletcherd S, Parke RF, Singhe D, Pereyrac S, Franckowiak J (2011) Mapping quantitative trait loci for partial resistance to powdery mildew in an Australian barley population. Crop Sci 52:1021–1032. doi: 10.2135/cropsci2011.10.0535 CrossRefGoogle Scholar
  39. Kosambi DD (1944) The estimation of map distances from recombinant values. Ann Eugen 12:172–175. doi: 10.1111/j.1469-1809.1943.tb02321.x Google Scholar
  40. Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992. doi: 10.1007/s00122-008-0955-4 PubMedCrossRefGoogle Scholar
  41. Lander ES, Green P, Abrahamson J, Barow A, Daly MJ, Lincoln SE, Newberg L (1987) MapMaker: an interactive computer program for constructing primary genetic maps of experimental and natural populations. Genomics 1:174–181. doi: 10.1016/0888-7543(87)90010-3 PubMedCrossRefGoogle Scholar
  42. Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166. doi: 10.1007/s00122-008-0743-1 PubMedCrossRefGoogle Scholar
  43. Lin J-Y, Stupar RM, Hans C, Hyten DL, Jackson SA (2010) Structural and functional divergence of a 1-Mb duplicated region in the soybean (Glycine max) genome and comparison to an orthologous region from Phaseolus vulgaris. Plant Cell 22:2545–2561. doi: 10.1105/tpc.110.074229 PubMedCrossRefGoogle Scholar
  44. López CE, Acosta IF, Jara C, Pedraza F, Gaitán-Solís E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathol 93:88–95. doi: 10.1094/PHYTO.2003.93.1.88 CrossRefGoogle Scholar
  45. Lynch M, Walsh B (1998) Mapping and characterizing QTLs: inbred line crosses. In: Lynch M (ed) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, Massachusetts, pp 431–489Google Scholar
  46. Mahuku G, Montoya C, Henrıquez MA, Jara C, Teran H, Beebe S (2004) Inheritance and characterization of angular leaf spot resistance gene present in common bean accession G10474 and identification of an AFLP marker linked to the resistance gene. Crop Sci 44:1817–1824. doi: 10.2135/cropsci2004.1817 CrossRefGoogle Scholar
  47. Mahuku GS, Iglesias AM, Jara C (2009) Genetics of angular leaf spot resistance in the Andean common bean accession G5686 and identification of markers linked to the resistance genes. Euphytica 167:381–396. doi: 10.1007/s10681-009-9897-4 CrossRefGoogle Scholar
  48. Mahuku GS, Henrıquez MA, Montoya C, Jara C, Teran H, Beebe S (2011) Inheritance and development of molecular markers linked to angular leaf spot resistance genes in the common bean accession G10909. Mol Breed 28:57–71CrossRefGoogle Scholar
  49. Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952. doi: 10.1038/ng1841 PubMedCrossRefGoogle Scholar
  50. Matthes M, Bruce T, Chamberlain K, Pickett J, Napier J (2011) Emerging roles in plant defense for cis-jasmone-induced cytochrome P450 CYP81D11. Plant Signal Behav 6:563–565. doi: 10.4161/psb.6.4.14915 PubMedCrossRefGoogle Scholar
  51. McClean PE, Mamidi S, McConnell M, Chikara S, Lee R (2010) Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genomics 11:184. doi: 10.1186/1471-2164-11-184 PubMedCrossRefGoogle Scholar
  52. Melotto M, Coelho MF, Pedrosa-Harand A, Kelly JD, Camargo LEA (2004) The anthracnose resistance locus Co-4 of common bean is located on chromosome 3 and contains putative disease resistance-related genes. Theor Appl Genet 109:690–699. doi: 10.1007/s00122-004-1697-6 PubMedCrossRefGoogle Scholar
  53. Miklas PN, Fourie D, Wagner J, Larsen RC, Mienie CMS (2009) Tagging and mapping gene for resistance to halo blight in common bean differential cultivar UI-3. Crop Sci 49:41–48. doi: 10.2135/cropsci2008.03.0145 CrossRefGoogle Scholar
  54. Miklas PN, Fourie D, Trapp J, Larsen RC, Chavarro C, Blair MW, Gepts P (2011) Genetic characterization and molecular mapping gene for resistance to halo blight in common bean. Crop Sci 51:2439–2448. doi: 10.2135/cropsci2011.01.0046 CrossRefGoogle Scholar
  55. Monda EO, Sanders FE, Hick A (2001) Infection and colonization of bean leaf by Phaeoisariopsis griseola. Plant Pathol 50:103–110. doi: 10.1046/j.1365-3059.2001.00537.x CrossRefGoogle Scholar
  56. Namayanja A, Buruchara R, Mahuku G, Rubaihayo P, Kimani P, Mayanja S, Eyedu H (2006) Inheritance of resistance to angular leaf spot in common bean and validation of the utility of resistance linked markers for marker assisted selection outside the mapping population. Euphytica 151:361–369. doi: 10.1007/s10681-006-9158-8 CrossRefGoogle Scholar
  57. Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 52:195–204. doi: 10.1111/j.1744-7909.2010.00933.x PubMedCrossRefGoogle Scholar
  58. Nekrasov V, Li J, Batoux M, Roux M, Chu Z-H, Lacombe S, Rougon A, Bittel P, Kiss-Papp M, Chinchilla D, Esse HP, Jorda L, Schwessinger B, Nicaise V, Thomma BPHJ, Molina A, Jones JDG, Zipfel C (2011) Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J 28:3428–3438. doi: 10.1038/emboj.2009.262 CrossRefGoogle Scholar
  59. Oblessuc PR, Baroni RM, Garcia AAF, Chioratto AF, Carbonell SAM, Aranha CLE, Benchimol LL (2012a) Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments. BMC Genet 13:50. doi: 10.1186/1471-2156-13-50 PubMedCrossRefGoogle Scholar
  60. Oblessuc PR, Borges A, Chowdhury B, Caldas DGG, Tsai SM, Camargo LEA, Melotto M (2012b) Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection. PLoS One 7:e43161. doi: 10.1371/journal.pone.0043161 PubMedCrossRefGoogle Scholar
  61. PhaseolusGene (2012) http://phaseolusgenes.bioinformatics.ucdavis.edu/. Accessed 17 Oct 2012
  62. Phytozome: comparative genomics of plants. http://www.phytozome.net/. Accessed 20 Sept 2012
  63. Queiroz VT, Sousa CS, Costa MR, Sanglad DA, Arruda KMA, Souza TLPO, Ragagnin VA, Barros EG, Moreira MA (2004) Development of SCAR markers linked to common bean angular leaf spot resistance genes. Bean Improv Coop Rep 47:237–238Google Scholar
  64. Ribeiro T, dos Santos KGB, Fonsêca A, Pedrosa-Harand A (2011) Isolation and characterization of a new repetitive DNA family recently amplified in the Mesoamerican gene pool of the common bean (Phaseolus vulgaris L., Fabaceae). Genetica 139:1135–1142. doi: 10.1007/s10709-011-9615-8 PubMedCrossRefGoogle Scholar
  65. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386. Available at http://fokker.wi.mit.edu/primer3/
  66. Satish K, Gutema Z, Grenier C, Rich PJ, Ejeta G (2012) Molecular tagging and validation of microsatellite markers linked to the low germination stimulant gene (lgs) for Striga resistance in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 124:989–1003. doi: 10.1007/s00122-011-1763-9 PubMedCrossRefGoogle Scholar
  67. Schlueter JA, Goicoechea JL, Collura K, Gill N, Lin J, Yu Y, Kudrna D, Zuccolo A, Vallejos CE, Muñoz-Torres M, Blair MW, Tohme J, Tomkins J, McClean P, Wing RA, Jackson SA (2008) BAC-end sequence analysis and a draft physical map of the common bean (Phaseolus vulgaris L.) genome. Trop Plant Biol 1:40–48. doi: 10.1007/s12042-007-9003-9 CrossRefGoogle Scholar
  68. Schwessinger B, Ronald PC (2012) Plant innate immunity: perception of conserved microbial signatures. Ann Rev Plant Biol 63:451–482. doi: 10.1146/annurev-arplant-042811-105518 CrossRefGoogle Scholar
  69. Sietsche S, Borém A, Carvalho GA, Rocha RC, Paula TJ Jr, de Barros EG, Moreira MA (2000) RAPD and SCAR markers linked to a gene conferring resistance to angular leaf spot in common bean. J Phytopathol 148:117–121. doi: 10.1046/j.1439-0434.2000.00479.x CrossRefGoogle Scholar
  70. Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50:2199–2223. doi: 10.2135/cropsci2009.03.0163 CrossRefGoogle Scholar
  71. Song F, Goodman RM (2002) Molecular cloning and characterization of a rice phosphoinositide-specific phospholipase C gene, OsPI-PLC1, that is activated in systemic acquired resistance. Physiol Mol Plant Pathol 61:31–40. doi: 10.1006/pmpp.2002.0414 Google Scholar
  72. Stenglein S, Ploper LD, Vizgarra O, Balatti P (2003) Angular leaf spot: a disease caused by the fungus Phaeoisariopsis griseola (Sacc.) Ferraris on Phaseolus vulgaris L. Adv Appl Microbiol 52:209–243. doi: 10.1016/S0065-2164(03)01009-8 PubMedCrossRefGoogle Scholar
  73. Tah PR, Lehmensiek A, Fox GP, Mace E, Sulman M, Bloustein G, Daggard GE (2010) Identification of genetic regions associated with black point in barley. Field Crops Res 115:61–66. doi: 10.1016/j.fcr.2009.10.003 CrossRefGoogle Scholar
  74. Tinker NA, Kilian A, Wight CP et al (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39. doi: 10.1186/1471-2164-10-39 PubMedCrossRefGoogle Scholar
  75. van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811. doi: 10.1007/BF00227388 Google Scholar
  76. van Ooijen G, Mayr G, Kasiem MMA, Albrecht M, Cornelissen BJC, Takken FLW (2008) Structure–function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59:1383–1397. doi: 10.1093/jxb/ern045 PubMedCrossRefGoogle Scholar
  77. Vazquez MD, Peterson CJ, Riera-Lizarazu O, Chen X, Heesacker A, Ammar K, Crossa J, Mundt CC (2012) Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theor Appl Genet 124:1–11. doi: 10.1007/s00122-011-1681-x CrossRefGoogle Scholar
  78. Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31:3688–3691. doi: 10.1093/nar/gkg526 PubMedCrossRefGoogle Scholar
  79. Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, Pel MA, Kamoun S (2011) Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49:507–531. doi: 10.1146/annurev-phyto-072910-095326 PubMedCrossRefGoogle Scholar
  80. Vorwerk S, Somerville S, Chris S (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209. doi: 10.1016/j.tplants.2004.02.005 PubMedCrossRefGoogle Scholar
  81. Vossen JH, Abd-El-Haliem A, Fradin EF, Van Den Berg GCM, Ekengren SK, Meijer HJG, Seifi A, Bai Y, Ten Have A, Munnik T, Thomma BPHJ, Joosten MHAJ (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–239. doi: 10.1111/j.1365-313X.2010.04136.x PubMedCrossRefGoogle Scholar
  82. Wang S, Basten CJ, Zeng ZB: Windows QTL Cartographer ver. 2.5. NC: Department of Statistics; 2005. [http://statgen.ncsu.edu/qtlcart/WQTLCart.htm]
  83. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. PNAS 101:9915–9920. doi: 10.1073/pnas.0401076101 PubMedCrossRefGoogle Scholar
  84. Wenzl P, Raman H, Wang J, Zhou M, Huttner E, Kilian A (2007) A DArT platform for quantitative bulked segregant analysis. BMC Genomics 8:196. doi: 10.1186/1471-2164-8-196 PubMedCrossRefGoogle Scholar
  85. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407. doi: 10.2135/cropsci2007.04.0191 CrossRefGoogle Scholar
  86. Yang Y, Zhang Y, Ding P, Johnson K, Li X, Zhang Y (2012) The ankyrin-repeat transmembrane protein BDA1 functions downstream of the receptor-like protein SNC2 to regulate plant immunity. Plant Physiol 159:1857–1865. doi: 10.1104/pp.112.197152 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paula Rodrigues Oblessuc
    • 1
    • 2
    Email author
  • Juliana Morini Kupper Cardoso Perseguini
    • 1
    • 2
  • Renata Moro Baroni
    • 1
    • 2
  • Alisson Fernando Chiorato
    • 3
  • Sérgio Augusto Morais Carbonell
    • 3
  • Jorge Mauricio Costa Mondego
    • 2
  • Ramon Oliveira Vidal
    • 4
  • Luis Eduardo Aranha Camargo
    • 5
  • Luciana Lasry Benchimol-Reis
    • 2
  1. 1.Departamento de Genética e Evolução e Bioagentes, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  2. 2.Centro de Recursos Genéticos VegetaisInstituto Agronômico de Campinas (IAC)CampinasBrazil
  3. 3.Centro de Grãos e FibrasInstituto Agronômico de Campinas (IAC)CampinasBrazil
  4. 4.CHU Sainte-Justine Research CenterUniversité de MontréalMontréalCanada
  5. 5.Departamento de Fitopatologia e NematologiaUniversidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz (USP-ESALQ)PiracicabaBrazil

Personalised recommendations