Theoretical and Applied Genetics

, Volume 126, Issue 9, pp 2353–2366 | Cite as

Genetic variability and QTL mapping of freezing tolerance and related traits in Medicago truncatula

  • Komlan Avia
  • Marie-Laure Pilet-Nayel
  • Nasser Bahrman
  • Alain Baranger
  • Bruno Delbreil
  • Véronique Fontaine
  • Céline Hamon
  • Eric Hanocq
  • Martine Niarquin
  • Hélène Sellier
  • Christophe Vuylsteker
  • Jean-Marie Prosperi
  • Isabelle Lejeune-Hénaut
Original Paper


Freezing is a major environmental limitation to crop productivity for a number of species including legumes. We investigated the genetic determinism of freezing tolerance in the model legume Medicago truncatula Gaertn (M. truncatula). After having observed a large variation for freezing tolerance among 15 M. truncatula accessions, the progeny of a F6 recombinant inbred line population, derived from a cross between two accessions, was acclimated to low above-freezing temperatures and assessed for: (a) number of leaves (NOL), leaf area (LA), chlorophyll content index (CCI), shoot and root dry weights (SDW and RDW) at the end of the acclimation period and (b) visual freezing damage (FD) during the freezing treatment and 2 weeks after regrowth and foliar electrolyte leakage (EL) 2 weeks after regrowth. Consistent QTL positions with additive effects for FD were found on LG1, LG4 and LG6, the latter being the most explanatory (R 2 ≈ 40 %). QTL for NOL, QTL for EL, NOL and RDW, and QTL for EL and CCI colocalized with FD QTL on LG1, LG4 and LG6, respectively. Favorable alleles for these additive effects were brought by the same parent suggesting that this accession contributes to superior freezing tolerance by affecting plants’ capacity to maintain growth at low above-freezing temperatures. No epistatic effects were found between FD QTL, but for each of the studied traits, 3–6 epistatic effects were detected between loci not detected directly as QTL. These results open the way to the assessment of syntenic relationships between QTL for frost tolerance in M. truncatula and cultivated legume species.


Quantitative Trait Locus Faba Bean Electrolyte Leakage Quantitative Trait Locus Mapping Freezing Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are very grateful to M. Delalande from INRA center of Mauguio (Montpellier, France) for kindly providing seeds of the M. truncatula LR3 population. We are also grateful to F. Depta, J-F. Hu, B. Decaux, R. Devaux, M. Boilleau, O. Jaminon, A-S. Niquet, K. Lourgant, A. Ketele, G. Deniot and I. Le Goff for either their technical support for devices used or great help for periodical sampling. This work was supported by the Picardie region and by the UNIP (Union Nationale Interprofessionnelle des Plantes Riches en Protéines). The development of the F83005-5 × DZA045-5 genetic map was supported within the EU-FP6 GLIP project. We thank two anonymous referees and the editor of this paper for their helpful and constructive comments.

Supplementary material

122_2013_2140_MOESM1_ESM.pdf (35 kb)
Online Resource 1 (PDF 34 kb)


  1. Annicchiarico P, Collins RP, Fornasier F, Rhodes I (2001) Variation in cold tolerance and spring growth among Italian white clover populations. Euphytica 122(2):407–416. doi: 10.1023/a:1012918100232 CrossRefGoogle Scholar
  2. Arbaoui M, Link W, Satovic Z, Torres AM (2008) Quantitative trait loci of frost tolerance and physiologically related trait in faba bean (Vicia faba L.). Euphytica 164(1):93–104. doi: 10.1007/s10681-008-9654-0 CrossRefGoogle Scholar
  3. Arraouadi S, Chardon F, Huguet T, Aouani ME, Badri M (2011) QTLs mapping of morphological traits related to salt tolerance in Medicago truncatula. Acta Physiol Plant 33(3):917–926. doi: 10.1007/s11738-010-0621-8 CrossRefGoogle Scholar
  4. Asghari A, Mohammadi SA, Moghaddam M, Shokuhian AA (2008) Identification of SSR and RAPD markers associated with QTLs of winter survival and related traits in Brassica napus L. Afr J Biotechnol 7(7):897–903Google Scholar
  5. Aubert G, Morin J, Jacquin F, Loridon K, Quillet M, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112(6):1024–1041. doi: 10.1007/s00122-005-0205-y PubMedCrossRefGoogle Scholar
  6. Baga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics 7(1):53–68. doi: 10.1007/s10142-006-0030-7 PubMedCrossRefGoogle Scholar
  7. Biber PD (2007) Evaluating a chlorophyll content meter on three coastal wetland plant species. J Agric Food Environ Sci 1(2):1–11Google Scholar
  8. Börner A, Schumann E, Fürste A, Cöster C, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105(6):921–936. doi: 10.1007/s00122-002-0994-1 PubMedGoogle Scholar
  9. Brandsæter LO, Olsmo A, Tronsmo AM, Fykse H (2002) Freezing resistance of winter annual and biennial legumes at different developmental stages. Crop Sci 42(2):437–443. doi: 10.2135/cropsci2002.4370 CrossRefGoogle Scholar
  10. Brouwer DJ, Duke SH, Osborn TC (2000) Mapping genetic factors associated with winter hardiness, fall growth, and freezing injury in autotetraploid alfalfa. Crop Sci 40(5):1387–1396CrossRefGoogle Scholar
  11. Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48(5):649–665CrossRefGoogle Scholar
  12. Chen TH-H, Gusta LV, Fowler DB (1983) Freezing injury and root development in winter cereals. Plant Physiol 73(3):773–777. doi: 10.1104/pp.73.3.773 PubMedCrossRefGoogle Scholar
  13. Choi H-K, Kim D, Uhm T, Limpens E, Lim H, Mun J-H, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004a) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166(3):1463–1502. doi: 10.1534/genetics.166.3.1463 PubMedCrossRefGoogle Scholar
  14. Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004b) Estimating genome conservation between crop and model legume species. PNAS 101(43):15289–15294. doi: 10.1073/pnas.0402251101 PubMedCrossRefGoogle Scholar
  15. Dexter ST, Tottingham WE, Graber LF (1930) Preliminary results in measuring the hardiness of plants. Plant Physiol 5:215–223. doi: 10.1104/pp.5.2.215 PubMedCrossRefGoogle Scholar
  16. Dionne J, Rochefort S, Huff DR, Desjardins Y, Bertrand A, Castonguay Y (2010) Variability for freezing tolerance among 42 ecotypes of green-type annual bluegrass. Crop Sci 50(1):321–336. doi: 10.2135/cropsci2008.12.0712 CrossRefGoogle Scholar
  17. Dumont E, Fontaine V, Vuylsteker C, Sellier H, Bodele S, Voedts N, Devaux R, Frise M, Avia K, Hilbert JL, Bahrman N, Hanocq E, Lejeune-Henaut I, Delbreil B (2009) Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor Appl Genet 118(8):1561–1571. doi: 10.1007/s00122-009-1004-7 PubMedCrossRefGoogle Scholar
  18. Equiza MA, Mirave JP, Tognetti JA (1997) Differential inhibition of shoot vs. root growth at low temperature and its relationship with carbohydrate accumulation in different wheat cultivars. Ann Bot 80(5):657–663. doi: 10.1006/anbo.1997.0503 CrossRefGoogle Scholar
  19. Eujayl I, Erskine W, Baum M, Pehu E (1999) Inheritance and linkage analysis of frost injury in lentil. Crop Sci 39(3):639–642. doi: 10.2135/cropsci1999.0011183X003900020004x CrossRefGoogle Scholar
  20. Finne MA, Rognli OA, Schjelderup I (2000) Genetic variation in a Norwegian germplasm collection of white clover (Trifolium repens L.)-1. Population differences in agronomic characteristics. Euphytica 112(1):33–44CrossRefGoogle Scholar
  21. Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map. Theor Appl Genet 108(4):670–680. doi: 10.1007/s00122-003-1468-9 PubMedCrossRefGoogle Scholar
  22. Gorton AJ, Heath KD, Pilet-Nayel M-L, Baranger A, Stinchcombe JR (2012) Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula. G3: Genes Genomes Genet 2(11):1291–1303. doi: 10.1534/g3.112.003269 Google Scholar
  23. Hamilton NRS, Skot L, Chorlton KH, Thomas ID, Mizen S (2002) Molecular genecology of temperature response in Lolium perenne: 1. preliminary analysis to reduce false positives. Mol Ecol 11(9):1855–1863. doi: 10.1046/j.1365-294X.2002.01567.x CrossRefGoogle Scholar
  24. Hamon C, Baranger A, Miteul H, Lecointe R, Le Goff I, Deniot G, Onfroy C, Moussart A, Prosperi JM, Tivoli B, Delourme R, Pilet-Nayel ML (2010) A complex genetic network involving a broad-spectrum locus and strain-specific loci controls resistance to different pathotypes of Aphanomyces euteiches in Medicago truncatula. Theor Appl Genet 120(5):955–970. doi: 10.1007/s00122-009-1224-x PubMedCrossRefGoogle Scholar
  25. Hayes PM, Blake T, Chen THH, Tragoonrung S, Chen F, Pan A, Liu B (1993) Quantitative trait loci on barley (Hordeum vulgare L.) chromosome-7 associated with components of winterhardiness. Genome 36(1):66–71PubMedCrossRefGoogle Scholar
  26. Hekneby M, Antolin MC, Sanchez-Diaz M (2001) Cold response of annual Mediterranean pasture legumes. Options Méditerranéennes Série A, Séminaires Méditerranéens 45:157–161Google Scholar
  27. Holland J (1998) Computer note. EPISTACY: a SAS program for detecting two-locus epistatic interactions using genetic marker information. J Hered 89(4):374–375. doi: 10.1093/jhered/89.4.374 CrossRefGoogle Scholar
  28. Holland JB (2006) Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci 46(2):642–654. doi: 10.2135/cropsci2005.0191 CrossRefGoogle Scholar
  29. Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–111Google Scholar
  30. Huguet T (2004) Genetic map of the Medicago truncatula LR4 population. LIPM, Toulouse, France.
  31. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106. doi: 10.1126/science.280.5360.104 PubMedCrossRefGoogle Scholar
  32. Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3(1):9. doi: 10.1186/1471-2229-3-9 PubMedCrossRefGoogle Scholar
  33. Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004) QTL mapping of winter hardiness genes in lentil. Crop Sci 44(1):13–22CrossRefGoogle Scholar
  34. Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breed 9(3):201–210. doi: 10.1023/a:1019759512347 CrossRefGoogle Scholar
  35. Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Hughet T, de Jong JH, Fransz PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27(1):49–58. doi: 10.1046/j.1365-313x.2001.01057.x Google Scholar
  36. Leinonen PH, Remington DL, Savolainen O (2011) Local adaptation, phenotypic differentiation, and hybrid fitness in diverged natural populations of Arabidopsis lyrata. Evolution 65(1):90–107. doi: 10.1111/j.1558-5646.2010.01119.x PubMedCrossRefGoogle Scholar
  37. Lejeune-Hénaut I, Hanocq E, Béthencourt L, Fontaine V, Delbreil B, Morin J, Petit A, Devaux R, Boilleau M, Stempniak JJ, Thomas M, Lainé AL, Foucher F, Baranger A, Burstin J, Rameau C, Giauffret C (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116(8):1105–1116. doi: 10.1007/s00122-008-0739-x PubMedCrossRefGoogle Scholar
  38. Lejeune-Hénaut I, Delbreil B, Devaux R, Guilioni L (2010) Cold temperatures and the functioning of the canopy in pea. In: Quae (ed) Physiology of the pea crop. Science Publishers, Enfield, pp 168–180Google Scholar
  39. Levitt J (1980) Chilling, freezing and high temperature stress, vol 1. Responses of plants to environmental stresses. Academic Press, New YorkGoogle Scholar
  40. Liesenfeld DR, Auld DL, Murray GA, Swensen JB (1986) Transmittance of winterhardiness in segregated populations of peas. Crop Sci 26:49–54CrossRefGoogle Scholar
  41. Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with MAPMAKER/EXP version 3.0. Technical Report, 3rd edn. Whitehouse Institute, CambridgeGoogle Scholar
  42. Loik ME, Redar SP (2003) Microclimate, freezing tolerance, and cold acclimation along an elevation gradient for seedlings of the Great Basin Desert shrub, Artemisia tridentata. J Arid Environ 54(4):769–782. doi: 10.1006/jare.2002.1106 CrossRefGoogle Scholar
  43. Moreau D, Salon C, Munier-Jolain N (2006) Using a standard framework for the phenotypic analysis of Medicago truncatula: an effective method for characterizing the plant material used for functional genomics approaches. Plant Cell Environ 29(6):1087–1098. doi: 10.1111/j.1365-3040.2005.01483.x PubMedCrossRefGoogle Scholar
  44. Mun J-H, Kim D-J, Choi H-K, Gish J, Debellé F, Mudge J, Denny R, Endré G, Saurat O, Dudez A-M, Kiss GB, Roe B, Young ND, Cook DR (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172(4):2541–2555. doi: 10.1534/genetics.105.054791 PubMedCrossRefGoogle Scholar
  45. Nakayama S, Daido H, Abe J (1997) Winter hardiness and growth at low temperature in European varieties of orchardgrass (Dactylis glomerata L.). Grassl Sci 43:224–230Google Scholar
  46. Palta JP, Li PH (1980) Alterations in membrane transport properties by freezing injury in herbaceous plants. Physiol Plant 50(2):169–175. doi: 10.1111/j.1399-3054.1980.tb04446.x CrossRefGoogle Scholar
  47. Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedo Z (1994) Genetic-analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89(7–8):900–910Google Scholar
  48. Pennycooke JC, Cheng H, Stockinger EJ (2008) Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol 146(3):1242–1254. doi: 10.1104/pp.107.108779 PubMedCrossRefGoogle Scholar
  49. Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153(1):185–194. doi: 10.1046/j.0028-646X.2001.00289.x CrossRefGoogle Scholar
  50. Ronfort J, Bataillon T, Santoni S, Delalande M, David J, Prosperi J-M (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biol 6(1):28. doi: 10.1186/1471-2229-6-28 PubMedCrossRefGoogle Scholar
  51. Rukavina H, Hughes HG, Qian Y (2007) Freezing tolerance of 27 saltgrass ecotypes from three cold hardiness zones. HortScience 42(1):157–160Google Scholar
  52. Stoddard F, Balko C, Erskine W, Khan H, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147(1):167–186. doi: 10.1007/s10681-006-4723-8 CrossRefGoogle Scholar
  53. Stone JM, Palta JP, Bamberg JB, Weiss LS, Harbage JF (1993) Inheritance of freezing resistance in tuber-bearing Solanum species: evidence for independent genetic control of nonacclimated freezing tolerance and cold acclimation capacity. Proc Natl Acad Sci 90(16):7869–7873PubMedCrossRefGoogle Scholar
  54. Sulc RM, Albrecht KA, Duke SH (1991a) Leakage of intracellular substances as an indicator of freezing injury in alfalfa. Crop Sci 31(2):430–435CrossRefGoogle Scholar
  55. Sulc RM, Albrecht KA, Palta JP, Duke SH (1991b) Leakage of intracellular substances from alfalfa roots at various subfreezing temperatures. Crop Sci 31(6):1575–1578CrossRefGoogle Scholar
  56. Tayeh N, Bahrman N, Devaux R, Bluteau A, Prosperi JM, Delbreil B, Lejeune-Hénaut I (2013) A high-density genetic map of the Medicago truncatula major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing damage on Pisum sativum linkage group VI. Mol Breed. doi: 10.1007/s11032-013-9869-1
  57. Teutonico RA, Yandell B, Satagopan JM, Ferreira ME, Palta JP, Osborn TC (1995) Genetic-analysis and mapping of genes-controlling freezing tolerance in oilseed Brassica. Mol Breed 1(4):329–339CrossRefGoogle Scholar
  58. Thapa B, Arora R, Knapp AD, Brummer EC (2008) Applying freezing test to quantify cold acclimation in Medicago truncatula. J Am Soc Hortic Sci 133(5):684–691Google Scholar
  59. Thoquet P, Gherardi M, Journet E-P, Kereszt A, Ane J-M, Prosperi J-M, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2(1):1. doi: 10.1186/1471-2229-2-1 PubMedCrossRefGoogle Scholar
  60. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. doi: 10.1093/jhered/93.1.77 PubMedCrossRefGoogle Scholar
  61. Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5 Department of Statistics, North Carolina State University, Raleigh, NC. http://statgenncsuedu/qtlcart/WQTLCarthtm
  62. Wooten DR, Livingston DP, Lyerly HJ, Holland JB, Jellen EN, Marshall DS, Murphy JP (2009) Quantitative trait loci and epistasis for oat winter-hardiness component traits. Crop Sci 49(6):1989–1998. doi: 10.2135/cropsci2008.10.0612 CrossRefGoogle Scholar
  63. Xiong Y, Fei S-z, Arora R, Brummer EC, Barker R, Jung G, Warnke S (2007) Identification of quantitative trait loci controlling winter hardiness in an annual × perennial ryegrass interspecific hybrid population. Mol Breed 19(2):125–136. doi: 10.1007/s11032-006-9050-1 CrossRefGoogle Scholar
  64. Yahia N, Fyad-Lameche FZ (2003) Evaluation of cold tolerance variability in annual Medicago species at the seedling stage. Acta Bot Gall 150(1):3–17CrossRefGoogle Scholar
  65. Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the Genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137(4):1174–1181. doi: 10.1104/pp.104.057034 PubMedCrossRefGoogle Scholar
  66. Young ND, Debelle F, Oldroyd GED et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524. doi: 10.1038/nature10625 PubMedGoogle Scholar
  67. Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol General Genet 264(1):145–153. doi: 10.1007/s004380000299 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Komlan Avia
    • 1
    • 5
  • Marie-Laure Pilet-Nayel
    • 2
  • Nasser Bahrman
    • 1
  • Alain Baranger
    • 2
  • Bruno Delbreil
    • 3
  • Véronique Fontaine
    • 1
  • Céline Hamon
    • 2
  • Eric Hanocq
    • 1
  • Martine Niarquin
    • 1
  • Hélène Sellier
    • 1
  • Christophe Vuylsteker
    • 3
  • Jean-Marie Prosperi
    • 4
  • Isabelle Lejeune-Hénaut
    • 1
  1. 1.INRA, UMR 1281 SADVPéronne CedexFrance
  2. 2.INRA, UMR 1349 IGEPPLe Rheu CedexFrance
  3. 3.USTL, UMR 1281 SADVVilleneuve d’AscqFrance
  4. 4.INRA, UMR 1334 AGAPMontpellier Cedex 2France
  5. 5.Plant Genetics Group, Department of BiologyUniversity of OuluOuluFinland

Personalised recommendations