Theoretical and Applied Genetics

, Volume 126, Issue 8, pp 2103–2121 | Cite as

High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae)

  • Lucy Gonthier
  • Christelle Blassiau
  • Monika Mörchen
  • Thierry Cadalen
  • Matthieu Poiret
  • Theo HendriksEmail author
  • Marie-Christine QuilletEmail author
Original Paper


High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1′ individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1′ mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1′ individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.


Amplify Fragment Length Polymorphism Male Sterility Cytoplasmic Male Sterility Amplify Fragment Length Polymorphism Marker Male Sterile Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Bruno Desprez (Florimond Desprez Veuve et Fils, Cappelle-en-Pévèle, France) for providing seeds of the Koospol population from which the plants analyzed were derived, our colleague Bruno Delbreil for assisting in the selection of the K28 and K59 genotypes, Angélique Bourceaux, Cédric Glorieux, Eric Schmitt and Nathalie Faure, from the ‘Plateforme de culture en environnement contrôlé’, for taking care of the plants, and Jules Beekwilder, Wageningen University and Research Centre, The Netherlands, for access to the sequences of the chicory root transcriptome. Sébastien Carrère, Jerome Gouzy and Patrick Vincourt (Laboratoire Interactions Plantes Micro-organismes, INRA, Toulouse) are thanked for the construction of the Cichorium sp. database, accessible through the HeliaGene portal. We also thank Simon Hiscock, University of Bristol, UK, for his comments and contributions to improving the manuscript. Lucy Gonthier was supported by a doctoral fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche, France. The project was financed by the Plant TEQ6 program (CPER PO 2007–2013), Région Nord-Pas de Calais, France and by the program CARTOCHIC (FCE OXYCHIC, SIAC 8862, 2007–2011).

Supplementary material

122_2013_2122_MOESM1_ESM.pdf (394 kb)
Online Resource 1 Features and primers for SRK-like sequences (PDF 394 kb)
122_2013_2122_MOESM2_ESM.pdf (206 kb)
Online Resource 2 Features and primers for sunflower EST-derived markers (HT) (PDF 205 kb)
122_2013_2122_MOESM3_ESM.pdf (443 kb)
Online Resource 3 Seed-set results of diallel and factorial crosses included 33 F1′ individuals (22 H, 11 MS) and the K28 and K59 parental genotypes. Gray squares correspond to compatible crosses, white squares to incompatible crosses, and striped squares indicate reciprocal crosses with different results. Deduced phenotypes (Phen) and genotypes (Geno) of the different compatibility groups are indicated. na: results of crosses not available (PDF 442 kb)
122_2013_2122_MOESM4_ESM.pdf (217 kb)
Online Resource 4 Linkage maps of LG1, LG3, LG4, LG6, LG7 and LG8 with integration of SRK-like (blue) and HT (red) derived markers (PDF 216 kb)


  1. Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005) The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell 17:3337–3349. doi: 10.1105/tpc.105.036814 CrossRefPubMedGoogle Scholar
  2. Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Biotech Histochem 44(3):117–122. doi: 10.3109/10520296909063335 CrossRefGoogle Scholar
  3. Allen AM, Hiscock SJ (2008) Evolution and phylogeny of self-incompatibility systems in angiosperms. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants—evolution, diversity, and mechanisms. Springer, Berlin, pp 73–101. doi: 10.1007/978-3-540-68486-2
  4. Allen AM, Thorogood CJ, Hegarty MJ, Lexer C, Hiscock SJ (2011) Pollen–pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Ann Bot 108(4):687–698. doi: 10.1093/aob/mcr147 CrossRefPubMedGoogle Scholar
  5. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. pii: gka562Google Scholar
  6. Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH (2008) Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol 25(11):2445–2455. doi: 10.1093/molbev/msn187 CrossRefPubMedGoogle Scholar
  7. Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke JM (2012) Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. G3 2(7):721–729. doi: 10.1007/s11103-012-9908-z Google Scholar
  8. Brennan AC, Harris SA, Hiscock SJ (2005) Modes and rates of selfing and associated inbreeding depression in the self-incompatible plant Senecio squalidus (Asteraceae): a successful colonizing species in the British Isles. New Phytol 168(2):475–486. doi: 10.1111/j.1469-8137.2005.01517.x CrossRefPubMedGoogle Scholar
  9. Brugmans B, van der Hulst RGM, Visser RGF, Lindhout P, van Eck HJ (2003) A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res 31(10):e55. doi: 10.1093/nar/gng055 CrossRefPubMedGoogle Scholar
  10. Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci III 324(6):543–550. doi: 10.1016/s0764-4469(01)01324-5 CrossRefPubMedGoogle Scholar
  11. Burke JM, Tang S, Knapp SJ, Rieseberg LH (2002) Genetic analysis of sunflower domestication. Genetics 161(3):1257–1267PubMedGoogle Scholar
  12. Burke JM, Lai Z, Salmaso M, Nakazato T, Tang S, Heesacker A, Knapp SJ, Rieseberg LH (2004) Comparative mapping and rapid karyotypic evolution in the genus Helianthus. Genetics 167(1):449–457. doi: 10.1534/genetics.167.1.449 CrossRefPubMedGoogle Scholar
  13. Cachi AM, Wünsch A (2011) Characterization and mapping of non-S gametophytic self-compatibility in sweet cherry (Prunus avium L.). J Exp Bot 62(6):1847–1856. doi: 10.1093/jxb/erq374 CrossRefPubMedGoogle Scholar
  14. Cadalen T, Morchen M, Blassiau C, Clabaut A, Scheer I, Hilbert JL, Hendriks T, Quillet MC (2010) Development of SSR markers and construction of a consensus genetic map for chicory (Cichorium intybus L.). Mol Breed 25(4):699–722. doi: 10.1007/s11032-009-9369-5 Google Scholar
  15. Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12(20):1718–1727. doi: 10.1016/s0960-9822(02)01151-x CrossRefPubMedGoogle Scholar
  16. Casselman AL, Vrebalov J, Conner JA, Singhal A, Giovannoni J, Nasrallah ME, Nasrallah JB (2000) Determining the physical limits of the Brassica S locus by recombinational analysis. Plant Cell 12(1):23–33. doi: 10.1105/tpc.12.1.23 PubMedGoogle Scholar
  17. Castaño CI, Demeulemeester MAC, De Proft MP (1997) Incompatibility reactions and genotypic identity status of five commercial chicory (Cichorium intybus L.) hybrids. Sci Hortic 72(1):1–9. doi: 10.1016/S0304-4238(97)00111-8
  18. Castric V, Vekemans X (2004) Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Mol Ecol 13(10):2873–2889. doi: 10.1111/j.1365-294X.2004.02267.x CrossRefPubMedGoogle Scholar
  19. Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity 88:94–101. doi: 10.1038/sj/hdy/6800016 CrossRefPubMedGoogle Scholar
  20. Chen JF, Hu JG, Vick BA, Jan CC (2006) Molecular mapping of a nuclear male-sterility gene in sunflower (Helianthus annuus L.) using TRAP and SSR markers. Theor Appl Genet 113(1):122–127. doi: 10.1007/s00122-006-0278-2 CrossRefPubMedGoogle Scholar
  21. Cheptou PO, Imbert E, Lepart J, Escarre J (2000) Effects of competition on lifetime estimates of inbreeding depression in the outcrossing plant Crepis sancta (Asteraceae). J Evol Biol 13(3):522–531CrossRefGoogle Scholar
  22. Chuck G (2010) Molecular mechanisms of sex determination in monoecious and dioecious plants. In: Kader J-C, Delseny M (eds) Advances in botanical research, vol 54. Academic Press, London, pp 53–83. doi: 10.1016/S0065-2296(10)54002-3
  23. Cichan MA (1983) Self fertility in wild populations of Cichorium intybus L. Bull Torrey Bot Club 110(3):316–323CrossRefGoogle Scholar
  24. Cnops G, denBoer B, Gerats A, VanMontagu M, VanLijsebettens M (1996) Chromosome landing at the Arabidopsis TORNADO1 locus using an AFLP-based strategy. Mol Gen Genet 253(1–2):32–41. doi: 10.1007/s004380050293 PubMedGoogle Scholar
  25. Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17(12):3350–3361. doi: 10.1105/tpc.105.036731 CrossRefPubMedGoogle Scholar
  26. Coppens d’Eeckenbrugge G, Evrard B (1988) Aspects quantitatifs de l’auto-incompatibilité chez la chicorée witloof (Cichorium intybus L.). II. Distribution des akènes entre capitules auto-pollinisés d’une même plante. Rev Agric 41(1):59–62Google Scholar
  27. Coppens d’Eeckenbrugge G, Evrard B, Louant B-P (1987) Aspects quantitatifs de l’auto-incompatibilité chez la chicorée witloof (Cichorium intybus L.). I. Relation entre fertilité et autofertilité. Rev Agric 40(1):35–40Google Scholar
  28. Crawford DJ, Archibald JK, Kelly JK, Mort ME, Santos-Guerra A (2010) Mixed mating in the ‘obligately outcrossing’ Tolpis (Asteraceae) of the Canary Islands. Plant Species Biol 25(2):114–119. doi: 10.1111/j.1442-1984.2010.00275.x CrossRefGoogle Scholar
  29. Dauchot N, Mingeot D, Purnelle B, Muys C, Watillon B, Boutry M, Van Cutsem P (2009) Construction of 12 EST libraries and characterization of a 12,226 EST dataset for chicory (Cichorium intybus) root, leaves and nodules in the context of carbohydrate metabolism investigation. BMC Plant Biol 9:14. doi: 10.1186/1471-2229-9-14 CrossRefPubMedGoogle Scholar
  30. de Brito GG, Caixeta ET, Gallina AP, Zambolim EM, Zambolim L, Diola V, Loureiro ME (2010) Inheritance of coffee leaf rust resistance and identification of AFLP markers linked to the resistance gene. Euphytica 173(2):255–264. doi: 10.1007/s10681-010-0119-x CrossRefGoogle Scholar
  31. de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  32. Decout E, Dubois T, Guedira M, Dubois J, Audran JC, Vasseur J (1994) Role of temperature as a triggering signal for organogenesis or somatic embryogenesis in wounded leaves of chicory cultured in vitro. J Exp Bot 45(281):1859–1865. doi: 10.1093/jxb/45.12.1859 CrossRefGoogle Scholar
  33. Desprez BF, Delesalle L, Dhellemmes C, Desprez MF (1994) Génétique et amélioration de la chicorée industrielle. C R Acad Agric 80(7):47–62Google Scholar
  34. Doré C, Varoquaux F (2006) La chicorée endive ou witloof. In: Doré C, Varoquaux F (eds) Histoire et amélioration de cinquante plantes cultivées. Quae, pp 207–217Google Scholar
  35. Doré C, Prigent J, Desprez B (1996) In situ gynogenetic haploid plants of chicory (Cichorium intybus L.) after intergeneric hybridization with Cicerbita alpina Walbr. Plant Cell Rep 15(10):758–761. doi: 10.1007/BF00232223 CrossRefGoogle Scholar
  36. Dubois T, Guedira M, Dubois J, Vasseur J (1991) Direct somatic embryogenesis in leaves of Cichorium—a histological and SEM study of early stages. Protoplasma 162(2–3):120–127. doi: 10.1007/BF02562555 CrossRefGoogle Scholar
  37. Eenink AH (1981) Compatibility and incompatibility in witloof-chicory (Cichorium intybus L.). 2. The incompatibility system. Euphytica 30(1):77–85. doi: 10.1007/BF00033662 CrossRefGoogle Scholar
  38. Ferrer MM, Good-Avila SV (2007) Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytol 173(2):401–414. doi: 10.1111/j.1469-8137.2006.01905.x CrossRefPubMedGoogle Scholar
  39. Franklin-Tong N, Franklin FCH (2003) Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Sci 8(12):598–605. doi: 10.1016/j.tplants.2003.10.008 CrossRefPubMedGoogle Scholar
  40. Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Garcia-Jacas N, Susanna A, Jansen RK (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biologiske Skrifter 55:343–374Google Scholar
  41. Gandhi SD, Heesacker AF, Freeman CA, Argyris J, Bradford K, Knapp SJ (2005) The self-incompatibility locus (S) and quantitative trait loci for self-pollination and seed dormancy in sunflower. Theor Appl Genet 111(4):619–629. doi: 10.1007/s00122-005-1934-7 CrossRefPubMedGoogle Scholar
  42. Gaude T, Cabrillac D (2001) Self-incompatibility in flowering plants: the Brassica model. C R Acad Sci III 324(6):537–542CrossRefPubMedGoogle Scholar
  43. Ge R-C, Zhao M-L, Gao H-W, Zhao B-C, Li G-L (2002) Study on C-banding and karyotype analysis of Puna Chicory. Acta Agrestia Sin 10(3):190–193Google Scholar
  44. Gonthier L, Bellec A, Blassiau C, Prat E, Helmstetter N, Rambaud C, Huss B, Hendriks T, Berges H, Quillet MC (2010) Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae). BMC Res Notes 3(1):225. doi: 10.1186/1756-0500-3-225 CrossRefPubMedGoogle Scholar
  45. Good-Avila SV, Mena-Alí JI, Stephenson AG (2008) Genetic and environmental causes and evolutionary consequences of variations in self-fertility in self incompatible species. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants—evolution, diversity, and mechanisms. Springer, Berlin, pp 33–51. doi: 10.1007/978-3-540-68486-2
  46. Goubet PM, Berges H, Bellec A, Prat E, Helmstetter N, Mangenot S, Gallina S, Holl AC, Fobis-Loisy I, Vekemans X, Castric V (2012) Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis. PLoS Genet 8(3):13. doi: 10.1371/journal.pgen.1002495 CrossRefGoogle Scholar
  47. Haque MZ, Godward MBE (1984) Effects of seed-irradiation on meiosis in Ml plants of Lactuca and related plants. Genetica 65:179–186. doi: 10.1007/BF00122903 CrossRefGoogle Scholar
  48. Heesacker A, Kishore VK, Gao WX, Tang SX, Kolkman JM, Gingle A, Matvienko M, Kozik A, Michelmore RM, Lai Z, Rieseberg LH, Knapp SJ (2008) SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theor Appl Genet 117(7):1021–1029. doi: 10.1007/s00122-008-0841-0 CrossRefPubMedGoogle Scholar
  49. Hiscock SJ (2000) Self-incompatibility in Senecio squalidus L. (Asteraceae). Ann Bot 85:181–190CrossRefGoogle Scholar
  50. Hiscock SJ, Tabah DA (2003) The different mechanisms of sporophytic self-incompatibility. Philos Trans R Soc Lond Ser B Biol Sci 358(1434):1037–1045CrossRefGoogle Scholar
  51. Hord CLH, Chen CB, DeYoung BJ, Clark SE, Ma H (2006) The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell 18(7):1667–1680. doi: 10.1105/tpc.105.036871 CrossRefPubMedGoogle Scholar
  52. Hord CLH, Suna YJ, Pillitteri LJ, Torii KU, Wang HC, Zhang SQ, Ma H (2008) Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases, MPK3 and MPK6, and the ERECTA and related receptor-like kinases. Mol Plant 1(4):645–658. doi: 10.1093/mp/ssn029 CrossRefPubMedGoogle Scholar
  53. Horner HT, Palmer RG (1995) Mechanisms of genic male sterility. Crop Sci 35:1527–1535. doi: 10.2135/cropsci1995.0011183X003500060002x CrossRefGoogle Scholar
  54. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KFX et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43(5):476–481. doi: 10.1038/ng.807 CrossRefPubMedGoogle Scholar
  55. Huang Z, Chen YF, Yi B, Xiao L, Ma CZ, Tu JX, Fu TD (2007) Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet 115(1):113–118. doi: 10.1007/s00122-007-0547-8 CrossRefPubMedGoogle Scholar
  56. Isokawa S, Osaka M, Shirasawa A, Kikuta R, Komatsu S, Horisaki A, Niikura S, Takada Y, Shiba H, Isogai A, Takayama S, Suzuki G, Suwabe K, Watanabe M (2010) Novel self-compatible lines of Brassica rapa L. isolated from the Japanese bulk-populations. Genes Genet Syst 85(2):87–96. doi: 10.1266/ggs.85.87 CrossRefPubMedGoogle Scholar
  57. Iwano M, Takayama S (2012) Self/non-self discrimination in angiosperm self-incompatibility. Curr Opin Plant Biol 15(1):78–83. doi: 10.1016/j.pbi.2011.09.003 CrossRefPubMedGoogle Scholar
  58. Jan CC, Vick BA (2007) Inheritance and allelic relationships of fertility restoration genes for seven new sources of male-sterile cytoplasm in sunflower. Plant Breed 126(2):213–217. doi: 10.1111/j.1439-0523.2007.01350.x CrossRefGoogle Scholar
  59. Jordan T, Romer P, Meyer A, Szczesny R, Pierre M, Piffanelli P, Bendahmane A, Bonas U, Lahaye T (2006) Physical delimitation of the pepper Bs3 resistance gene specifying recognition of the AvrBs3 protein from Xanthomonas campestris pv. vesicatoria. Theor Appl Genet 113(5):895–905. doi: 10.1007/s00122-006-0349-4 Google Scholar
  60. Kakeda K, Urabayashi T, Ohashi T, Oguro T, Kowyama Y (2009) Agrobacterium-mediated transformation of Ipomoea trifida, a diploid relative of sweet potato. Breed Sci 59(1):95–98. doi: 10.1270/jsbbs.59.95 CrossRefGoogle Scholar
  61. Kane NC, Gill N, King MG, Bowers JE, Berges H, Gouzy J, Bachlava E, Langlade NB, Lai Z, Stewart M, Burke JM, Vincourt P, Knapp SJ, Rieseberg LH (2011) Progress towards a reference genome for sunflower. Bot 89(7):429–437. doi: 10.1139/B11-032 CrossRefGoogle Scholar
  62. Kaul MLH (ed) (1988) Male sterility in higher plants. Monographs on Theoretical and Applied Genetics, vol 10. Springer, BerlinGoogle Scholar
  63. Kawabe A, Hansson B, Forrest A, Hagenblad J, Charlesworth D (2006) Comparative gene mapping in Arabidopsis lyrata chromosomes 6 and 7 and A. thaliana chromosome IV: evolutionary history, rearrangements and local recombination rates. Genet Res 88(1):45–56CrossRefPubMedGoogle Scholar
  64. Kempe K, Gils M (2011) Pollination control technologies for hybrid breeding. Mol Breed 27(4):417–437. doi: 10.1007/s11032-011-9555-0 CrossRefGoogle Scholar
  65. Kiers AM (2000) Endive, chicory and their wild relatives. A systematic and phylogenetic study of Cichorium (Asteraceae). PhD Thesis, Leiden University, The NetherlandsGoogle Scholar
  66. Kiers AM, Mes THM, van der Meijden R, Bachmann K (2000) A search for diagnostic AFLP markers in Cichorium species with emphasis on endive and chicory cultivar groups. Genome 43(3):470–476PubMedGoogle Scholar
  67. Kilian N, Gemeinholzer B, Lack HW (2009) Cichorieae. In: Funk VA, Susanna A, Stuessy TE, Bayer RJ (eds) Systematics, evolution, and biogeography of Compositae. International Association for Plant Taxonomy, Vienna, pp 343–383Google Scholar
  68. Klaas M, Yang BC, Bosch M, Thorogood D, Manzanares C, Armstead IP, Franklin FCH, Barth S (2011) Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann Bot 108(4):677–685. doi: 10.1093/aob/mcr186 CrossRefPubMedGoogle Scholar
  69. Koopman WJM (2002) Zooming in on the lettuce genome: species relationships in Lactuca s.l., inferred from chromosomal and molecular characters, PhD Thesis. Wageningen University, The NetherlandsGoogle Scholar
  70. Kowyama Y, Kakeda K, Kondo K, Imada T, Hattori T (1996) A putative receptor protein kinase gene in Ipomoea trifida. Plant Cell Physiol 37(5):681–685CrossRefPubMedGoogle Scholar
  71. Kubo K, Entani T, Takara A, Wang N, Fields AM, Hua ZH, Toyoda M, Kawashima S, Ando T, Isogai A, Kao T, Takayama S (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330(6005):796–799. doi: 10.1126/science.1195243 CrossRefPubMedGoogle Scholar
  72. Lahaye T, Hartmann S, Topsch S, Freialdenhoven A, Yano M, Schulze-Lefert P (1998) High-resolution genetic and physical mapping of the Rar1 locus in barley. Theor Appl Genet 97(4):526–534. doi: 10.1007/s001220050927 CrossRefGoogle Scholar
  73. Lai Z, Nakazato T, Salmaso M, Burke JM, Tang S, Knapp SJ, Rieseberg LH (2005) Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics 171(1):291–303. doi: 10.1534/genetics.105.042242 CrossRefPubMedGoogle Scholar
  74. Legrand S, Hendriks T, Hilbert JL, Quillet MC (2007) Characterization of expressed sequence tags obtained by SSH during somatic embryogenesis in Cichorium intybus L. BMC Plant Biol 7:27. doi: 10.1186/1471-2229-7-27 CrossRefPubMedGoogle Scholar
  75. Lucchin M, Varotto S, Barcaccia G, Parrini P (2008) Chicory and endive. In: Prohens J, Nuez F, Carena MJ (eds) Vegetables I, vol 1. Handbook of plant breeding. Springer, New York, pp 3–48. doi: 10.1007/978-0-387-30443-4_1
  76. Ma X-H, Qin R-L, Xing W-B (1984) Chromosome observation of some medical plants in Xinjiang. Acta Phytotaxono Sin 22(3):243–249Google Scholar
  77. McInnis SM, Costa LM, Gutierrez-Marcos JF, Henderson CA, Hiscock SJ (2005) Isolation and characterization of a polymorphic stigma-specific class III peroxidase gene from Senecio squalidus L. (Asteraceae). Plant Mol Biol 57(5):659–677CrossRefPubMedGoogle Scholar
  78. Meksem K, Leister D, Peleman J, Zabeau M, Salamini F, Gebhardt C (1995) A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet 249(1):74–81. doi: 10.1007/BF00290238 CrossRefPubMedGoogle Scholar
  79. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis—a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS 88(21):9828–9832. doi: 10.1073/pnas.88.21.9828 CrossRefPubMedGoogle Scholar
  80. Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J 50(5):751–766. doi: 10.1111/j.1365-313X.2007.03083.x CrossRefPubMedGoogle Scholar
  81. Murase K, Shiba H, Iwano M, Che FS, Watanabe M, Isogai A, Takayama S (2004) A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303(5663):1516–1519. doi: 10.1126/science.1093586 CrossRefPubMedGoogle Scholar
  82. Myburg AA, Remington DL, O’Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. BioTechniques 30(2):348PubMedGoogle Scholar
  83. Nonomura KI, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N (2003) The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15(8):1728–1739. doi: 10.1105/tpc.012401 CrossRefPubMedGoogle Scholar
  84. Paris M, Meyer C-L, Blassiau C, Coissac E, Taberlet P, Després L (2012) Two methods to easily obtain nucleotide sequences from AFLP loci of interest. In: Pompanon F, Bonin A (eds) Data production and analysis in population genomics, vol 888., Methods in Molecular Biology SeriesHumana Press, New Jersey, pp 91–108CrossRefGoogle Scholar
  85. Pécaut P (1962) Etude sur le système de reproduction de l’endive (Cichorium intybus L.). Ann Amélior Plantes 12:265–296Google Scholar
  86. Rahman MH, Tsuchiya T, Suwabe K, Kohori J, Tomita RN, Kagaya Y, Kobayashi I, Kakeda K, Kowyama Y (2007a) Physical size of the S locus region defined by genetic recombination and genome sequencing in Ipomoea trifida, Convolvulaceae. Sex Plant Reprod 20(2):63–72CrossRefGoogle Scholar
  87. Rahman MH, Uchiyama M, Kuno M, Hirashima N, Suwabe K, Tsuchiya T, Kagaya Y, Kobayashi I, Kakeda K, Kowyama Y (2007b) Expression of stigma- and anther-specific genes located in the S locus region of Ipomoea trifida. Sex Plant Reprod 20(2):73–85. doi: 10.1007/s00497-007-0045-9 CrossRefGoogle Scholar
  88. Rambaud C, Dubois J, Vasseur J (1992) The induction of tetraploïdy in chicory (Cichorium intybus L. var Magdebourg) by protoplast fusion. Euphytica 62(1):63–67CrossRefGoogle Scholar
  89. Rambaud C, Dubois J, Vasseur J (1993) Male-sterile chicory cybrids obtained by intergeneric protoplast fusion. Theor Appl Genet 87(3):347–352. doi: 10.1007/BF01184922 CrossRefGoogle Scholar
  90. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  91. Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286(5445):1697–1700. doi: 10.1126/science.286.5445.1697 CrossRefPubMedGoogle Scholar
  92. Sherman-Broyles S, Nasrallah JB (2008) Self-incompatibility and evolution of mating systems in the Brassicaceae. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants—evolution, diversity, and mechanisms. Springer, Berlin, pp 123–147. doi: 10.1007/978-3-540-68486-2
  93. Silva NF, Goring DR (2001) Mechanisms of self-incompatibility in flowering plants. Cell Mol Life Sci 58(14):1988–2007. doi: 10.1007/PL00000832 CrossRefPubMedGoogle Scholar
  94. Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB (1991) Molecular-cloning of a putative receptor protein-kinase gene encoded at the self-incompatibility locus of Brassica oleracea. PNAS 88(19):8816–8820CrossRefPubMedGoogle Scholar
  95. Stout AB (1917) Fertility in Cichorium intybus: the sporadic occurence of self-fertile plants among the progeny of self-sterile plants. Am J Bot 4(7):375–395CrossRefGoogle Scholar
  96. Stout AB (1918) Fertility in Cichorium intybus. Self-compatibility and self-incompatibility among the offspring of self-fertile lines of descent. J Genet 9:71–103. doi: 10.1007/BF02984312 CrossRefGoogle Scholar
  97. Suzuki G, Kai N, Hirose T, Fukui K, Nishio T, Takayama S, Isogai A, Watanabe M, Hinata K (1999) Genomic organization of the S locus: identification and characterization of genes in SLG/SRK region of S 9 haplotype of Brassica campestris (syn. rapa). Genetics 153(1):391–400PubMedGoogle Scholar
  98. Suzuki G, Tanaka S, Yamamoto M, Tomita RN, Kowyama Y, Mukai Y (2004) Visualization of the S-locus region in Ipomoea trifida: toward positional cloning of self-incompatibility genes. Chromosom Res 12(5):475–481. doi: 10.1023/B:CHRO.0000034749.58877.b7 CrossRefGoogle Scholar
  99. Tabah DA, McInnis SM, Hiscock SJ (2004) Members of the S-receptor kinase multigene family in Senecio squalidus L. (Asteraceae), a species with sporophytic self-incompatibility. Sex Plant Reprod 17(3):131–140. doi: 10.1007/s00497-004-0222-z
  100. Takayama S, Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56:467–489. doi: 10.1146/annurev.arplant.56.032604.144249 CrossRefPubMedGoogle Scholar
  101. Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24(2):149–160. doi: 10.1007/s00497-010-0157-5 CrossRefPubMedGoogle Scholar
  102. Uyenoyama MK (2005) Evolution under tight linkage to mating type. New Phytol 165:63–70CrossRefPubMedGoogle Scholar
  103. Van Ooijen JW, Voorrips RE (2001) JoinMap® version 3.0: software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  104. Varotto S, Pizzoli L, Lucchin M, Parrini P (1995) The incompatibility system in Italian red chicory (Cichorium intybus L.). Plant Breed 114(6):535–538. doi: 10.1111/j.1439-0523.1995.tb00851.x CrossRefGoogle Scholar
  105. Vilanova S, Badenes ML, Burgos L, Martinez-Calvo J, Llacer G, Romero C (2006) Self-compatibility of two apricot selections is associated with two pollen-part mutations of different nature. Plant Physiol 142(2):629–641. doi: 10.1104/pp.106.083865 CrossRefPubMedGoogle Scholar
  106. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414CrossRefPubMedGoogle Scholar
  107. Wan JR, Patel A, Mathieu M, Kim SY, Xu D, Stacey G (2008) A lectin receptor-like kinase is required for pollen development in Arabidopsis. Plant Mol Biol 67(5):469–482. doi: 10.1007/s11103-008-9332-6 CrossRefPubMedGoogle Scholar
  108. Wang Y, Wang X, McCubbin AG, T-h Kao (2003) Genetic mapping and molecular characterization of the self-incompatibility (S) locus in Petunia inflata. Plant Mol Biol 53(4):565–580. doi: 10.1023/B:PLAN.0000019068.00034.09 CrossRefPubMedGoogle Scholar
  109. Wang DJ, Guo AG, Li DR, Tian JH, Huang F, Sun GL (2007) Cytological and molecular characterization of a novel monogenic dominant GMS in Brassica napus L. Plant Cell Rep 26(5):571–579. doi: 10.1007/s00299-006-0276-5 CrossRefPubMedGoogle Scholar
  110. Wei P, Feng H, Piao ZY, Li CY, Liu ZY, Wang YG, Ji RQ, Zou T, Ji SJ (2009) Identification of AFLP markers linked to Ms, a genic multiple allele inherited male-sterile gene in Chinese cabbage. Breed Sci 59(4):333–339. doi: 10.1270/jsbbs.59.333 CrossRefGoogle Scholar
  111. Wheeler MJ, Armstrong SA, Franklin-Tong VE, Franklin FCH (2003) Genomic organization of the Papaver rhoeas self-incompatibility S 1 locus. J Exp Bot 54(380):131–139. doi: 10.1093/jsb/erg006 CrossRefPubMedGoogle Scholar
  112. Wheeler MJ, Vatovec S, Franklin-Tong VE (2010) The pollen S-determinant in Papaver: comparisons with known plant receptors and protein ligand partners. J Exp Bot 61(7):2015–2025. doi: 10.1093/jxb/erp383 CrossRefPubMedGoogle Scholar
  113. Wills DM, Burke JM (2007) Quantitative trait locus analysis of the early domestication of sunflower. Genetics 176(4):2589–2599. doi: 10.1534/genetics.107.075333 CrossRefPubMedGoogle Scholar
  114. Xiao QJ, Wibowo TA, Wu XL, Michal JJ, Reeves JJ, Busboom JR, Thorgaard GH, Jiang ZH (2007) A simplified QTL mapping approach for screening and mapping of novel AFLP markers associated with beef marbling. J Biotechnol 127(2):177–187. doi: 10.1016/j.jbiotec.2006.06.021 CrossRefPubMedGoogle Scholar
  115. Xing QH, Ru ZG, Zhou CJ, Xue X, Liang CY, Yang DE, Jin DM, Wang B (2003) Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtms1) in wheat. Theor Appl Genet 107(8):1500–1504. doi: 10.1007/s00122-003-1385-y CrossRefPubMedGoogle Scholar
  116. Yang QY, Zhang DF, Li Q, Cheng ZK, Xue YB (2007) Heterochromatic and genetic features are consistent with recombination suppression of the self-incompatibility locus in Antirrhinum. Plant J 51(1):140–151CrossRefPubMedGoogle Scholar
  117. Yi B, Chen YN, Lei SL, Tu JX, Fu TD (2006) Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet 113(4):643–650. doi: 10.1007/s00122-006-0328-9 CrossRefPubMedGoogle Scholar
  118. Yue B, Cai X, Yuan W, Vick B, Hu J (2009) Mapping quantitative trait loci (QTL) controlling seed morphology and disk diameter in sunflower (Helianthus annuus L.). HELIA 32(50):17–36. doi: 10.2298/HEL0950017Y Google Scholar
  119. Yue B, Vick BA, Cai X, Hu J (2010) Genetic mapping for the Rf1 (fertility restoration) gene in sunflower (Helianthus annuus L.) by SSR and TRAP markers. Plant Breed 129(1):24–28. doi: 10.1111/j.1439-0523.2009.01661.x
  120. Zhang ZZ, Guo ML, Zhang JD (2009) Identification of AFLP fragments linked to hydroxysafflor yellow A in Flos Carthami and conversion to a SCAR marker for rapid selection. Mol Breed 23(2):229–237. doi: 10.1007/s11032-008-9228-9 CrossRefGoogle Scholar
  121. Zhao DZ, Wang GF, Speal B, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16(15):2021–2031. doi: 10.1101/gad.997902 CrossRefPubMedGoogle Scholar
  122. Zuriaga E, Molina L, Badenes ML, Romero C (2012) Physical mapping of a pollen modifier locus controlling self-incompatibility in apricot and synteny analysis within the Rosaceae. Plant Mol Biol 79(3):229–242. doi: 10.1007/s11103-012-9908-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lucy Gonthier
    • 1
    • 3
  • Christelle Blassiau
    • 1
  • Monika Mörchen
    • 1
    • 2
  • Thierry Cadalen
    • 1
    • 2
  • Matthieu Poiret
    • 1
  • Theo Hendriks
    • 1
    Email author
  • Marie-Christine Quillet
    • 1
    Email author
  1. 1.Université de Lille, UMR INRA-Lille 1 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV)Villeneuve d’AscqFrance
  2. 2.Université Lille 1, GIS CARTOCHIC, UMR INRA-Lille 1 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV)Villeneuve d’AscqFrance
  3. 3.Université Lille 1, UMR CNRS 8198, Génétique et Evolution des Populations Végétales (GEPV)Villeneuve d’AscqFrance

Personalised recommendations