Skip to main content
Log in

Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Since the dawn of wheat cytogenetics, chromosome 3B has been known to harbor a gene(s) that, when removed, causes chromosome desynapsis and gametic sterility. The lack of natural genetic diversity for this gene(s) has prevented any attempt to fine map and further characterize it. Here, gamma radiation treatment was used to create artificial diversity for this locus. A total of 696 radiation hybrid lines were genotyped with a custom mini array of 140 DArT markers, selected to evenly span the whole 3B chromosome. The resulting map spanned 2,852 centi Ray with a calculated resolution of 0.384 Mb. Phenotyping for the occurrence of meiotic desynapsis was conducted by measuring the level of gametic sterility as seeds produced per spikelet and pollen viability at booting. Composite interval mapping revealed a single QTL with LOD of 16.2 and r 2 of 25.6 % between markers wmc326 and wPt-8983 on the long arm of chromosome 3B. By independent analysis, the location of the QTL was confirmed to be within the deletion bin 3BL7-0.63-1.00 and to correspond to a single gene located ~1.4 Mb away from wPt-8983. The meiotic behavior of lines lacking this gene was characterized cytogenetically to reveal striking similarities with mutants for the dy locus, located on the syntenic chromosome 3 of maize. This represents the first example to date of employing radiation hybrids for QTL analysis. The success achieved by this approach provides an ideal starting point for the final cloning of this interesting gene involved in meiosis of cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3B-RH:

Radiation hybrids for chromosome 3B

cR:

Centi Rays

CS:

Chinese Spring

DArT:

Diversity Arrays Technology

Gy:

Gray

H 2 :

Broad sense heritability

LDN:

Langdon

LDN 3D (3B):

Langdon substitution line 3D for 3B

M1 :

Mutant generation 1

MS:

Mean sum of squares

MSg:

Mean sum of squares for the genotype

MSge:

Mean sum of squares for the genotype by environment

PV:

Pollen viability

QTL:

Quantitative trait loci

RH0 or RH1 :

Radiation hybrid generation 0 or 1

SpS:

Seeds per spikelet

SSR:

Single sequence repeat

References

  • Akbari M, Wenzl P, Caig V et al (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Al-Kaff N, Knight E, Bertin I, Foote T, Hart N, Griffiths S, Moore G (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101:863–872

    Article  CAS  PubMed  Google Scholar 

  • Baskaran R (2010) Emerging role of radiation induced bystander effects: cell communications and carcinogenesis. Genome Integr 1:13

    Article  Google Scholar 

  • Beadle GW (1930) Genetic and cytological studies of a Mendelian asynaptic in Zea mays. Cornell Agric Exp Stn Mem 129:1–23

    Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi U et al (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12:119–125

    Article  CAS  PubMed  Google Scholar 

  • Bourne GH, Danielli JF (1979) International review of cytology, vol 58. Academic Press Inc, London

    Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710

    Article  CAS  PubMed  Google Scholar 

  • Cande ZW, Freeling M (2011) Inna Golubovskaya: the life of a geneticist studying meiosis. Genetics 188(3):491–498

    Article  PubMed  Google Scholar 

  • Caryl AP, Gareth HJ, Franklin FCH (2003) Dissecting plant meiosis using Arabidopsis thaliana mutants. J Exp Botany 54(380):25–38

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Cox DR, Burmeister M, Price ER, Kim S, Myers RM (1990) Radiation hybrid mapping: a somatic cell genetic method for construction of high-resolution maps of mammalian chromosomes. Science 250:245–250

    Article  CAS  PubMed  Google Scholar 

  • de Boer E, Heyting C (2006) The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 115:220–234

    Article  PubMed  Google Scholar 

  • de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) Carthagene: multi population integrated genetic and radiated hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  Google Scholar 

  • Devos KM, Sorrells ME, Anderson JA et al (1999) Chromosome aberrations in wheat nullisomic-tetrasomic and ditelosomic lines. Cereal Res Commun 27(3):231–239

    CAS  Google Scholar 

  • Dolezel J, Simkova H, Kubalakova M et al (2009) Chromosome genomics in the Triticeae. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, New York, pp 285–316

    Chapter  Google Scholar 

  • Elkonin LA, Tsvetova MI (2012) Heritable effect of plant water availability conditions on restoration of male fertility in the “9E” CMS-inducing cytoplasm of sorghum. Front Plant Sci 3:91

    Article  CAS  PubMed  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stock of common wheat. J Hered 87(4):295–307

    Article  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Addison Wesley Longman Limited, Edinburgh Gate

    Google Scholar 

  • Faraut T (2009) Contribution of radiation hybrids to genome mapping in domestic animals. Cytogenet Genome Res 126:21–33

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Gill BS (2003) Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45:706–719

    Article  Google Scholar 

  • Franckowiak JD, Lundqvist U (2008) Table of barley genetic stock description. Barley Genetics Newsl 38:134–164

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Article  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    CAS  PubMed  Google Scholar 

  • Goss SJ, Harris H (1975) New method for mapping genes in human chromosomes. Nature 255:680–684

    Article  CAS  PubMed  Google Scholar 

  • Guidet F, Rogowsky P, Taylor C, Song W, Langridge P (1991) Cloning and characterisation of a new rye-specific repeated sequence. Genome 34:81–87

    Article  Google Scholar 

  • Hallauer AR, Miranda JB (1988) Quantitative research in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Hassold T, Sherman S, Hunt P (2009) Counting cross-overs: characterizing meiotic recombination in mammals. Hum Mol Genet 9(16):2409–2419

    Article  Google Scholar 

  • Henderson AS (1970) The time and place of meiotic crossing-over. Annu Rev Genet 4:295–324

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Soriano JM, Ramage RT (1973) Desynaptic genes. Barley Genetics Newsl 4:123–125

    Google Scholar 

  • Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19(20):2488–2500

    Article  CAS  PubMed  Google Scholar 

  • Hossain KG, Riera-Lizarazu O, Kalavacharla V, Vales MI, Maan SS, Kianian SF (2004) Radiation hybrid mapping of the species cytoplasm-specific (scs ae) gene in wheat. Genetics 168:415–423

    Article  CAS  PubMed  Google Scholar 

  • Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Joppa LR, Williams ND (1977) D-genome substitution monosomics of durum wheat. Crop Sci 17:772–776

    Article  Google Scholar 

  • Joppa LR, Williams ND (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228

    Article  Google Scholar 

  • Joppa LR, Williams ND (1993) The Langdon durum disomic-substitutions: development, characteristics, and uses. Agron Abstr, p 68

  • Kalavacharla V, Hossain K, Gu Y et al (2006) High-resolution radiation hybrid map of wheat chromosome 1D. Genetics 173:1089–1099

    Article  CAS  PubMed  Google Scholar 

  • Kim N (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35:673–745

    Article  Google Scholar 

  • Kumar A, Bassi FM, Paux E et al (2012a) DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrids of Triticum. BMC Genomics 13:339

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Simons K, Iqbal M et al (2012b) Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics 13:597

    Article  CAS  PubMed  Google Scholar 

  • Kynast RG, Okagaki RJ, Rines HW, Phillips RL (2002) Maize individualized chromosome and derived radiation hybrid lines and their use in functional genomics. Funct Integr Genomic 2:60–69

    Article  CAS  Google Scholar 

  • Li HW, Pao WK, Li CH (1945) Desynapsis in the common wheat. Am J Bot 32(2):92–101

    Article  Google Scholar 

  • Martini G, Bozzini A (1966) Radiation induced asynaptic muattions in durum wheat (Triticum durum Desf.). Chromosoma 20:251–266

    Article  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Apples R, Xia XC (2011) Catalogue of gene symbols for wheat: 2011 supplement. Annu Wheat Newsl 57

  • Michalak de Jimenez MK, Bassi FM, Ghavami F et al (2013) A radiation hybrid map of chromosome 1D reveals synteny conservation at a wheat speciation locus. Funct Integr Genomics 13:19–32

    Article  CAS  PubMed  Google Scholar 

  • Murphy SP, Bass HW (2012) The maize (Zea mays) desynaptic (dy) mutation defines a pathway for meiotic chromosome segregation, linking nuclear morphology, telomere distribution and synapsis. J Cell Sci 125(15):3681–3690

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    Article  CAS  PubMed  Google Scholar 

  • Paux E, Sourdille P, Salse J et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  CAS  PubMed  Google Scholar 

  • Paux E, Faure S, Choulet F et al (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8:196–210

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski WP, Golubovskaya IN, Cande WZ (2003) Altered nuclear distribution of recombination protein RAD51 in maize mutants suggests the involvement of RAD51 in meiotic homology recognition. Plant Cell 15:1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Peterson R, Slovin JP, Chen C (2010) A simplified method for differential staining of aborted and non-aborted pollen grains. Int J Plant Biol 1:e13

    Article  Google Scholar 

  • Qiao H, Chen JK, Reynolds A, Hoog C, Paddy M, Hunter N (2012) Interplay between synaptonemal complex, homologous recombination, and centromeres during mammalian meiosis. PLoS Genet 8(6):e1002790

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Zhang K, Cakir M et al (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 8:781–791

    Article  Google Scholar 

  • Ross KJ, Fransz P, Jones GH (1996) A light microscope atlas of meiosis in Arabidopsis thaliana. Chromosom Res 4:507–516

    Article  CAS  Google Scholar 

  • Rustenholz C, Choulet F, Laugier C et al (2011) A 3,000-loci transcript map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. Plant Physiol 157:1596–1608

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schramm S, Fraune J, Naumann R et al (2011) A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility. PLoS Genet 7(5):e1002088

    Article  CAS  PubMed  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Missouri Agr Exp Stn Res Bull 572:1–58

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Shi JR, Singh S et al (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Sutka J, Galiba G, Vagujfalvi A, Gill BS, Snape JW (1999) Physical mapping of Vrn-A1 and genes on chromosome 5A of wheat using deletion line. Theor Appl Genet 99:199–202

    Article  CAS  Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    Article  CAS  PubMed  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Tiwari VK, Riera-Lizarazu O, Gunn HL et al (2012) Endosperm tolerance of paternal aneuploidy allows radiation-hybrid mapping of the wheat D-genome and a measure of γ ray-induced chromosome breaks. PLoS ONE 7(11):e48815

    Article  CAS  PubMed  Google Scholar 

  • Tsilo TJ, Hareland GA, Chao S, Anderson JA (2011) Genetic mapping and QTL analysis of flour color and milling yield related traits using recombinant inbred lines in hard red spring wheat. Crop Sci 51:237–246

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

  • Watanabe N, Koval SF (2003) Mapping of chlorine mutant genes on the long arm of homoeologous group 7 chromosomes in common wheat with partial deletion lines. Euphytica 129:259–265

    Article  CAS  Google Scholar 

  • Wenzl P, Suchánková P, Carling J et al (2010) Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic maps. Theor Appl Genet 121:465–474

    Article  CAS  PubMed  Google Scholar 

  • Xu SJ, Joppa LR (1995) Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. Genome 38:607–615

    Article  CAS  PubMed  Google Scholar 

  • Xu SJ, Joppa LR (2000) Hexaploid triticales from hybrids of Langdon durum D-genome substitutions with rye. Plant Breed 119:223–226

    Article  Google Scholar 

  • Zhirov EG, Bessarab KS, Gubanova MA (1974) Genetic studies on partial desynapsis in soft wheat. Soviet Genetics 9(1):10–18

    CAS  PubMed  Google Scholar 

  • Zhou C, Dong W, Han L et al (2012) Construction of whole genome radiation hybrid panels and map of chromosome 5A of wheat using asymmetric somatic hybridization. PLoS ONE 7(7):e40214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor Wojtek Pawlowski (Cornell University, NY) for in-depth revision and insightful comments on this manuscript, Justin Hegstad and Allen Peckrul for their qualified technical help. This work was supported by funding from the National Science Foundation, Plant Genome Research Program (NSF-PGRP) grant No. IOS-0822100 to SFK. F.M.B was partially supported by Program Master and Back Regione Autonoma della Sardegna and Monsanto Beachell-Borlaug International Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Kianian.

Additional information

Communicated by P. Heslop-Harrison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 640 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassi, F.M., Kumar, A., Zhang, Q. et al. Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. Theor Appl Genet 126, 1977–1990 (2013). https://doi.org/10.1007/s00122-013-2111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2111-z

Keywords

Navigation