Theoretical and Applied Genetics

, Volume 126, Issue 5, pp 1321–1336

Genetic characterization and mapping of the Rht-1 homoeologs and flanking sequences in wheat

  • Edward P. Wilhelm
  • Rhian M. Howells
  • Nadia Al-Kaff
  • Jizeng Jia
  • Catherine Baker
  • Michelle A. Leverington-Waite
  • Simon Griffiths
  • Andy J. Greenland
  • Margaret I. Boulton
  • Wayne Powell
Original Paper

Abstract

The introgression of Reduced height (Rht)-B1b and Rht-D1b into bread wheat (Triticum aestivum) varieties beginning in the 1960s led to improved lodging resistance and yield, providing a major contribution to the ‘green revolution’. Although wheat Rht-1 and surrounding sequence is available, the genetic composition of this region has not been examined in a homoeologous series. To determine this, three Rht-1-containing bacterial artificial chromosome (BAC) sequences derived from the A, B, and D genomes of the bread wheat variety Chinese Spring (CS) were fully assembled and analyzed. This revealed that Rht-1 and two upstream genes were highly conserved among the homoeologs. In contrast, transposable elements (TEs) were not conserved among homoeologs with the exception of intronic miniature inverted-repeat TEs (MITEs). In relation to the Triticum urartu ancestral line, CS-A genic sequences were highly conserved and several colinear TEs were present. Comparative analysis of the CS wheat BAC sequences with assembled Poaceae genomes showed gene synteny and amino acid sequences were well preserved. Further 5′ and 3′ of the wheat BAC sequences, a high degree of gene colinearity is present among the assembled Poaceae genomes. In the 20 kb of sequence flanking Rht-1, five conserved non-coding sequences (CNSs) were present among the CS wheat homoeologs and among all the Poaceae members examined. Rht-A1 was mapped to the long arm of chromosome 4 and three closely flanking genetic markers were identified. The tools developed herein will enable detailed studies of Rht-1 and linked genes that affect abiotic and biotic stress response in wheat.

Supplementary material

122_2013_2055_MOESM1_ESM.pdf (4.1 mb)
Supplementary material 1 (PDF 4246 kb)
122_2013_2055_MOESM2_ESM.xls (58 kb)
Supplementary material 2 (XLS 58 kb)

References

  1. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng JR, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94PubMedCrossRefGoogle Scholar
  2. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signalling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129PubMedCrossRefGoogle Scholar
  3. Akhunov ED, Akhunova AR, Linkiewicz AM, Dubcovsky J, Hummel D, Lazo GR, Chao S, Anderson OD, David J, Qi L, Echalier B, Gill BS, Miftahudin, Gustafson JP, La Rota M, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng J, Lapitan NLV, Wennerlind EJ, Nduati V, Anderson JA, Sidhu D, Gill KS, McGuire PE, Qualset CO, Dvorak J (2003a) Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates. Proc Natl Acad Sci USA 100:10836–10841PubMedCrossRefGoogle Scholar
  4. Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Dvorak J, Miftahudin, Gustafson JP, Lazo G, Chao S, Anderson OD, Linkiewicz AM, Dubcovsky J, La Rota M, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla P, Hossain K, Kianian SF, Peng J, Lapitan N, Gonzalez-Hernandez JL, Anderson JA, Choi DW, Close TJ, Dilbirligi M, Gill KS, Walker-Simmons MK, Steber C, McGuire PE, Qualset CO, Dvorak J (2003b) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763PubMedCrossRefGoogle Scholar
  5. Allouis S, Moore G, Bellec A, Sharp R, Faivre Rampant P, Mortimer K, Pateyron S, Foote TN, Griffiths S, Caboche M, Chalhoub B (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cer Res Comm 31:331–338Google Scholar
  6. Anderson OD, Larka L, Christoffers MJ, McCue KF, Gustafson JP (2002) Comparison of orthologous and paralogous DNA flanking the wheat height molecular weight glutenin genes: sequence conservation and divergence, transposon distribution, and matrix-attachment regions. Genome 45:367–3890PubMedCrossRefGoogle Scholar
  7. Borner A, Roder M, Korzun V (1997) Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theor Appl Genet 95:1133–1137CrossRefGoogle Scholar
  8. Botticella E, Sestili F, Lafiandra D (2012) Characterization of SBEIIa homoeologous genes in bread wheat. Mol Genet Genomics 287:515–524PubMedCrossRefGoogle Scholar
  9. Buchmann JP, Matsumoto T, Stein N, Keller B, Wicker T (2012) Inter-species sequence comparison of Brachypodium reveals how transposon activity corrodes genome colinearity. Plant J 71:550–563PubMedCrossRefGoogle Scholar
  10. Cao W, Somers DJ, Fedak G (2009) A molecular marker closely linked to the region of Rht-D1c and Ms2 genes in common wheat (Triticum aestivum). Genome 52:95–99PubMedCrossRefGoogle Scholar
  11. Chalupska D, Lee HY, Faris JD, Evrard A, Chalhoub B, Haselkorn R, Gornicki P (2008) Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci USA 105:9691–9696PubMedCrossRefGoogle Scholar
  12. Cuthbert JL, Somers DJ, Brule-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608PubMedCrossRefGoogle Scholar
  13. Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288CrossRefGoogle Scholar
  14. Devos KM, Ma J, Pontaroli AC, Pratt LH, Bennetzen JL (2005) Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci USA 102:19243–19248PubMedCrossRefGoogle Scholar
  15. Devos KM, Costa de Oliveira A, Xu X, Estill JC, Estep M, Jogi A, Morales M, Pinheiro J, San Miguel P, Bennetzen JL (2008) Structure and organization of the wheat genome—the number of genes in the hexaploid wheat genome. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of 11th international wheat geneticc symposium. Sydney University Press, Sydney, eO24, pp 1–5Google Scholar
  16. Doebley JF, Gaut BS, Smith DS (2006) The molecular genetics of crop domestication. Cell 127:1309–1321PubMedCrossRefGoogle Scholar
  17. Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625Google Scholar
  18. Duan J, Wu J, Liu Y, Xiao J, Zhao G, Gu Y, Jia J, Kong X (2012) New cis-regulatory elements in the Rht-D1b locus region of wheat. Funct Integr Genomics 12:489–500PubMedCrossRefGoogle Scholar
  19. Dvorak J, Akhunov ED (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploidy evolution in the Aegilops-Triticum alliance. Genetics 171:323–332PubMedCrossRefGoogle Scholar
  20. Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Gen 105:1038–1042CrossRefGoogle Scholar
  21. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  22. Febrer M, Wilhelm E, Al-Kaff N, Wright J, Powell W, Bevan MW, Boulton MI (2009) Rapid identification of the three homoeologs of the wheat dwarfing gene Rht using a novel PCR-based screen of three-dimensional BAC pools. Genome 52:993–1000PubMedCrossRefGoogle Scholar
  23. Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Dept of Genome Sciences, University of Washington, SeattleGoogle Scholar
  24. Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209CrossRefGoogle Scholar
  25. Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedCrossRefGoogle Scholar
  26. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics, Nucl Acids Res 40(D1):D1178-–D1186Google Scholar
  27. Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol 135:459–470PubMedCrossRefGoogle Scholar
  28. Gu YQ, Salse J, Coleman-Derr D, Dupin A, Crossman C, Lazo GR, Huo N, Belcram H, Ravel C, Charmet G, Charles M, Anderson OD, Chalhoub B (2006) Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 174:1493–1504PubMedCrossRefGoogle Scholar
  29. Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genomics, Art ID 896451. doi:10.1155/2008/896451
  30. Hilton AJ, Jenkinson P, Hollins TW, Parry DW (1999) Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Path 48:202–208CrossRefGoogle Scholar
  31. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138PubMedCrossRefGoogle Scholar
  32. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  33. Izumi N, Sawada S, Sasakuma T (1983) Genetic analysis of dwarfness in Triticum aestivum L. cv. ‘Ai-bian 1’. Seiken Ziho 31:38–48Google Scholar
  34. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing, and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659PubMedGoogle Scholar
  35. Kong X-Y, Gu YQ, You FM, Dubcovsky J, Anderson OD (2004) Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Plant Mol Biol 54:55–69PubMedCrossRefGoogle Scholar
  36. Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res 19:42–56PubMedCrossRefGoogle Scholar
  37. Kumar S, Mohan A, Balyan HS, Gupta PK (2009) Orthology between genomes of B. distachyon, wheat and rice. BMC Research Notes 2:93PubMedCrossRefGoogle Scholar
  38. Lai J, Ma J, Swigonova Z, Ramakrishna W, Linton E, Llaca V, Tanyolac B, Park Y-J, Jeong O-Y, Bennetzen JL, Messing J (2004) Gene loss and movement in the maize genome. Genome Res 14:1924–1931PubMedCrossRefGoogle Scholar
  39. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  40. Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X (2012) A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol 196:282–291PubMedCrossRefGoogle Scholar
  41. McVittie JA, Gale MD, Marshall GA, Westcott B (1978) The intra-chromosomal mapping of the Norin 10 and Tom Thumb dwarfing genes. Heredity 40:67–70CrossRefGoogle Scholar
  42. Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011CrossRefGoogle Scholar
  43. Miftahudin, Ross K, Ma X-F, Mahmoud AA, Layton J, Rodriguez M, Chikmawati T, Ramalingam J, Feril O, Pathan MS, Surlan Momirovic G, Kim S, Chema K, Fang P, Haule L, Struxness H, Birkes J, Yaghoubian C, Skinner R, McAllister J, Nguyen V, Qi LL, Gill BS, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Dilbirligi M, Gill KS, Peng JH, Lapitan NLV, Bermudez-Kandianis CE, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Lazo GR, Chao S, Anderson OD, Gonzalez-Hernandez J, Wennerlind EJ, Anderson JA, Choi D-W, Fenton RD, Close TJ, McGuire PE, Qualset CO, Nguyen HT, Gustafson JP (2004) Analysis of EST loci on wheat chromosome group 4. Genetics 168:651–663PubMedCrossRefGoogle Scholar
  44. Moore G, Devos K, Wang Z, Gale M (1995) Cereal genome evolution: grasses, line up and form a circle. Curr Biol 5:737–739PubMedCrossRefGoogle Scholar
  45. Moriconi JI, Buet A, Simontacchi M, Santa-Maria GE (2012) Near-isogenic wheat lines carrying altered function alleles of the Rht-1 genes exhibit differential responses to potassium deprivation. Plant Sci 185–186:199–207PubMedCrossRefGoogle Scholar
  46. Morimoto R, Kosugi T, Nakamura C, Takumi S (2005) Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. Plant Mol Biol 57:907–924PubMedCrossRefGoogle Scholar
  47. Naranjo T, Roca P, Goicoechea PG, Giraldez R (1987) Arm homoeology of wheat and rye chromosomes. Genome 29:873–882CrossRefGoogle Scholar
  48. Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance and salicylic acid signaling. Curr Biol 18:650–655PubMedCrossRefGoogle Scholar
  49. Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995) Molecular mapping of wheat: major genes and rearrangements of homoeologous groups 4, 5, and 7. Genetics 141:721–731PubMedGoogle Scholar
  50. Nicholas KB, Nicholas HB (1997) GeneDoc: a tool for editing and annotation multiple sequence alignments. Distributed by the author (http://www.psc.edu/biomed/genedoc)
  51. Paterson AH, Bowers JE, Feltus FA, Tang H, Lin L, Wang X (2009) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149:125–131PubMedCrossRefGoogle Scholar
  52. Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterisation of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831PubMedCrossRefGoogle Scholar
  53. Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261PubMedCrossRefGoogle Scholar
  54. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen F, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollintong PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880PubMedCrossRefGoogle Scholar
  55. Ragupathy R, Cloutier S (2008) Genome organisation and retrotransposon driven molecular evolution of the endosperm Hardness (Ha) locus in Triticum aestivum cv Glenlea. Molec Genet Genomics 280:467–481CrossRefGoogle Scholar
  56. Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genet 43:169–173PubMedCrossRefGoogle Scholar
  57. Raquin AL, Brabant P, Rhone B, Balfourier F, Leroy P, Goldringer I (2008) Soft selective sweep near a gene that increases plant height in wheat. Mol Ecol 17:741–756PubMedCrossRefGoogle Scholar
  58. Salse J, Chague V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B (2008) New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics 9:555PubMedCrossRefGoogle Scholar
  59. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  60. Saville RJ, Gosman N, Burt CJ, Makepeace J, Steed A, Corbitt M, Chandler E, Brown JKM, Boulton MI, Nicholson P (2012) The ‘Green Revolution’ dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare. J Exp Bot 63:1271–1283PubMedCrossRefGoogle Scholar
  61. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotech 18:233–234CrossRefGoogle Scholar
  62. Smith SM, Yuan Y, Doust AN, Bennetzen JL (2012) Haplotype analysis and linkage disequilibrium at five loci in Eragrostis tef. Genes Genomes Genetics 2:407–419PubMedGoogle Scholar
  63. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  64. Srinivasachary, Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Gen 116:1145–1153CrossRefGoogle Scholar
  65. Srinivasachary, Gosman N, Steed A, Hollins TW, Bayles R, Jennings P, Nicholson P (2009) Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118:695–702PubMedCrossRefGoogle Scholar
  66. Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923PubMedCrossRefGoogle Scholar
  67. Uchida N, Townsley B, Chung K-H, Sinha N (2007) Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci USA 104:15953–15958PubMedCrossRefGoogle Scholar
  68. Van Ooijen JW (2006) Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., WageningenGoogle Scholar
  69. Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35(Web Server issue):W265–W268Google Scholar
  70. Yan W, Li HB, Cai SB, Ma HX, Rebetzke GJ, Liu CJ (2011) Effects of plant height on type I and type II resistance to Fusarium head blight in wheat. Plant Path 60:506–512CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Edward P. Wilhelm
    • 1
    • 2
  • Rhian M. Howells
    • 1
  • Nadia Al-Kaff
    • 2
    • 5
  • Jizeng Jia
    • 3
  • Catherine Baker
    • 2
  • Michelle A. Leverington-Waite
    • 2
  • Simon Griffiths
    • 2
  • Andy J. Greenland
    • 1
  • Margaret I. Boulton
    • 2
  • Wayne Powell
    • 1
    • 4
  1. 1.National Institute of Agricultural BotanyCambridgeUK
  2. 2.John Innes CentreNorwichUK
  3. 3.Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Science, Chinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  4. 4.Institute of Biological, Environmental, and Rural SciencesAberystwythUK
  5. 5.Taibah UniversityAl-Madina Al-MunwarahKingdom of Saudi Arabia

Personalised recommendations