Theoretical and Applied Genetics

, Volume 126, Issue 4, pp 1077–1101 | Cite as

Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.)

  • Irma Terracciano
  • Marco MaccaferriEmail author
  • Filippo Bassi
  • Paola Mantovani
  • Maria C. Sanguineti
  • Silvio Salvi
  • Hana Šimková
  • Jaroslav Doležel
  • Andrea Massi
  • Karim Ammar
  • James Kolmer
  • Roberto Tuberosa
Original Paper


Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a-resistant gene present in the durum wheat cv. Creso and its derivative cv. Colosseo is one of the best characterized leaf-rust resistance sources deployed in durum wheat breeding. Lr14a has been mapped close to the simple sequence repeat markers gwm146, gwm344 and wmc10 in the distal portion of the chromosome arm 7BL, a gene-dense region. The objectives of this study were: (1) to enrich the Lr14a region with single nucleotide polymorphisms (SNPs) and high-resolution melting (HRM)-based markers developed from conserved ortholog set (COS) genes and from sequenced Diversity Array Technology (DArT®) markers; (2) to further investigate the gene content and colinearity of this region with the Brachypodium and rice genomes. Ten new COS-SNP and five HRM markers were mapped within an 8.0 cM interval spanning Lr14a. Two HRM markers pinpointed the locus in an interval of <1.0 cM and eight COS-SNPs were mapped 2.1–4.1 cM distal to Lr14a. Each marker was tested for its capacity to predict the state of Lr14a alleles (in particular, Lr14-Creso associated to resistance) in a panel of durum wheat elite germplasm including 164 accessions. Two of the most informative markers were converted into KASPar® markers. Single assay markers ubw14 and wPt-4038-HRM designed for agarose gel electrophoresis/KASPar® assays and high-resolution melting analysis, respectively, as well as the double-marker combinations ubw14/ubw18, ubw14/ubw35 and wPt-4038-HRMubw35 will be useful for germplasm haplotyping and for molecular-assisted breeding.


Simple Sequence Repeat Marker Durum Wheat Leaf Rust Chinese Spring DArT Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research supported by the “AGER-Agroalimentare e Ricerca” foundation, “From Seed to Pasta” project, and by Emilia-Romagna Region (Laboratorio SITEIA, Misura 4 “Sviluppo di rete”, Azione A). The Interdepartmental Centre for Biotechnology (University of Bologna, Italy) is gratefully acknowledged. The authors thank S. Corneti and S. Stefanelli for technical assistance in molecular genotyping and phenotyping, J. Číhalíková, R. Šperková, and Z. Dubská in chromosome sorting and preparation of amplified chromosomal DNA. F.M. Bassi was supported by program “Master and Back” of the Regione Autonoma della Sardegna, and by Monsanto Beachell-Borlaug International Scholarship.

Supplementary material

122_2012_2038_MOESM1_ESM.pptx (466 kb)
Supplementary material 1 (PPTX 466 kb)
122_2012_2038_MOESM2_ESM.ppt (481 kb)
Supplementary material 2 (PPT 481 kb)
122_2012_2038_MOESM3_ESM.xls (171 kb)
Supplementary material 3 (XLS 171 kb)


  1. Aguilar-Rincón VH, Singh RP, Castillo GF, Huerta-Espino J (2001) Genes de resistencia a la roya de la hoja en un trigo sintético hexaploide. Rev Fitotec Mex 24:161–169Google Scholar
  2. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden M, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420PubMedCrossRefGoogle Scholar
  3. Allen AM, Barker GL, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086–1099PubMedCrossRefGoogle Scholar
  4. Amaro LAM, Mir SGL, Huerta Hespino J, Mir EV (2007) Genetics of leaf rust resistance (Puccinia triticina E.) in elite durum wheat lines. Rev Fitotec Mex 30:33–38Google Scholar
  5. Autrique E, Singh R, Tanksley SD, Sorrells ME (1995) Molecular markers for four leaf rust genes introgressed into wheat from wild relatives. Genome 38:75–83PubMedCrossRefGoogle Scholar
  6. Azhaguvel JC, Yaqin R, Ming-Cheng M, Weng LY (2012) Fine genetic mapping of greenbug aphid-resistance gene Gb3 in Aegilops tauschii Perumal. Theor Appl Genet 124:555–564PubMedCrossRefGoogle Scholar
  7. Badaeva D, Dedkova OS, Gay G, Pukhalskyi VA, Zelenin AV, Bernard S, Bernard M (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome 50:907–926PubMedCrossRefGoogle Scholar
  8. Barabino SML, Hubner W, Jenny A, Minvielle-Sebastia L, Keller W (1997) The 30-kD subunit of mammalian clevage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev 11:1703–1716PubMedCrossRefGoogle Scholar
  9. Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12:1–7CrossRefGoogle Scholar
  10. Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717PubMedCrossRefGoogle Scholar
  11. Botticella E, Sestili F, Hernandez-Lopez A, Phillips A, La Fiandra D (2011) High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes. BMC Plant Biol 11:156PubMedCrossRefGoogle Scholar
  12. Bozkurt O, Hakki EE, Akkaya MS (2007) Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Biochem Genet 4:469–486CrossRefGoogle Scholar
  13. Browder LE (1972) Designation of two genes for resistance to Puccinia recondita in Triticum aestivum. Crop Sci 12:705–706CrossRefGoogle Scholar
  14. Burt C, Hollins TW, Nicholson P (2011) Identification of a QTL conferring seedling and adult plant resistance to eyespot on chromosome 5A of Cappelle Desprez. Theor Appl Genet 122:119–128PubMedCrossRefGoogle Scholar
  15. Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA (2012) Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet 124:1201–1214PubMedCrossRefGoogle Scholar
  16. Ceoloni C, Biagetti M, Ciaffi M, Forte P, Pasquini M (1996) Wheat chr. engineering at the 4× level: the potential of different alien gene transfers into durum wheat. Euphytica 89:87–97CrossRefGoogle Scholar
  17. De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) Carthagene: multi population integrated genetic and radiated hybrid mapping. Bioinformatics 21:1703–1704PubMedCrossRefGoogle Scholar
  18. De Vita P, Nicosia OLD, Nigro F, Platani C, Riefolo C, Di Fonzo N, Cattivelli L (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur J Agron 26:39–53CrossRefGoogle Scholar
  19. De Vita P, Mastrangelo AM, Matteu L, Mazzucotelli E, Virzi N, Palumbo M, Lo Storto M, Rizza F, Cattivelli L (2010) Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Fields Crops Res 119:68–77CrossRefGoogle Scholar
  20. Ding J, Zhang W, Jung Z, Chen JQ, Tian D (2007) Unique pattern of R0 gene variation within populations in Arabidopsis. Mol Genet Genomics 277:619–629PubMedCrossRefGoogle Scholar
  21. Dolezel J, Kubalakova M, Paux E, Bartos J, Feuillet C (2007) Chromosome-based genomics in cereals. Chromosome Res 15:51–66PubMedCrossRefGoogle Scholar
  22. Dong C, Vincent K, Sharp S (2009) Simultaneous mutation detection of three homoeologous genes in wheat by high resolution melting analysis and mutation surveyor. BMC Plant Biol 9:143PubMedCrossRefGoogle Scholar
  23. Driscoll CJ, Anderson LM (1967) Cytogenetic studies of Transec—a wheat-rye translocation line. Can J Genet Cytol 9:375–380Google Scholar
  24. Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655–1660CrossRefGoogle Scholar
  25. Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396PubMedCrossRefGoogle Scholar
  26. Dyck PL (1994) The transfer of leaf rust resistance from Triticum turgidum ssp. dicoccoides to hexaploid wheat. Plant Sci 74:671–673Google Scholar
  27. Dyck PL, Kerber ER (1971) Chromosome location of three genes for leaf rust resistance in common wheat. Can J Genet Cytol 13:480–483Google Scholar
  28. Dyck PL, Kerber ER (1977) Inheritance of leaf rust resistance in wheat cultivars Rafaela and EAP 26127 and chromosome location of gene Lr17. Can J Genet Cytol 19:355–358Google Scholar
  29. Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSR and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413PubMedCrossRefGoogle Scholar
  30. Estoup A, Cornuet JM (1999) Microsatellite evolution: inferences from population data. In: Goldstein DB, Schlötterer C (eds) Microsatellites: evolution and applications. Oxford University Press, Oxford, pp 49–64Google Scholar
  31. Eversole K (2009) Advancements toward sequencing the bread wheat genome: an update of the projects of the International Wheat Genome Sequencing Consortium. Annu Wheat Newsl 55:11–16Google Scholar
  32. Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot Lond 89:3–10CrossRefGoogle Scholar
  33. Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32PubMedCrossRefGoogle Scholar
  34. Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 7:463–471Google Scholar
  35. Goyeau H, Ammar K, Berder J (2010) Virulence in Puccinia triticina for durum wheat cultivar Creso and other durum wheat cultivars carrying resistance gene Lr14a in France. Plant Dis 94:1068CrossRefGoogle Scholar
  36. Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161CrossRefGoogle Scholar
  37. Haggag MEA, Dyck PL (1973) The inheritance of leaf rust resistance in four common wheat varieties possessing genes at or near the Lr3 locus. Can J Genet Cytol 15:127–134Google Scholar
  38. Han Y, Kang Y, Torres-Jerez I, Cheung F, Town CD, Zhao PX, Udvardi MK, Monteros MJ (2011) Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genomics 12:350CrossRefGoogle Scholar
  39. He XY, He ZH, Ma W, Appels R, Xia XC (2009) Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed 23:553–563CrossRefGoogle Scholar
  40. Helguera M, Khan IA, Dubcovsky J (2000) Development of PCR markers for the wheat leaf rust resistance gene Lr47. Theor Appl Genet 100:1137–1143CrossRefGoogle Scholar
  41. Herrera-Foessel SA, Singh RP, Huerta-Espino J, Yuen J, Djurle A (2005) New genes for leaf rust resistance in CIMMYT durum wheats. Plant Dis 89:809–814CrossRefGoogle Scholar
  42. Herrera-Foessel SA, Singh RP, Huerta-Espino J, Crossa J, Yuen J, Djurle A (2006) Effect of leaf rust on grain yield and yield traits of durum wheats with race-specific and slow-rusting resistance to leaf rust. Plant Dis 90:1065–1072CrossRefGoogle Scholar
  43. Herrera-Foessel SA, Singh RP, Huerta-Espino J, Crossa J, Djurle A, Yuen J (2007a) Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica 155:361–369CrossRefGoogle Scholar
  44. Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Rosewarne G, Djurle A, Yuen J (2007b) Identification and mapping of Lr3 and a linked leaf rust resistance gene in durum wheat. Crop Sci 47:1459–1466CrossRefGoogle Scholar
  45. Herrera-Foessel SA, Djurle A, Yuen J, Singh RP, William HM, Garcia V, Huerta-Espino J (2008a) Identification and molecular characterization of leaf rust resistance gene Lr14a in durum wheat. Plant Dis 92:469–473CrossRefGoogle Scholar
  46. Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Djurle A, Yuen J (2008b) Molecular mapping of a leaf rust resistance gene on the short arm of chromosome 6B of durum wheat. Plant Dis 92:1650–1654CrossRefGoogle Scholar
  47. Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Djurle A, Yuen J (2008c) Genetic analysis of slow-rusting resistance to leaf rust in durum wheat. Crop Sci 48:2132–2140CrossRefGoogle Scholar
  48. Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS ONE 5:e10065PubMedCrossRefGoogle Scholar
  49. Huerta-Espino J, Roelfs AP (1989) Physiological specialization of leaf rust on durum wheat. Phytopathol 79:1218Google Scholar
  50. Huerta-Espino J, Roelfs AP (1992) Leaf rust on durum wheat. Vortr Pflanzenzuchtg 24:100–102Google Scholar
  51. Huerta-Espino R, Singh P, Germán S, McCallum BD, Park RF, Chen WQ, Bhardwaj SC, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160CrossRefGoogle Scholar
  52. Jun TH, Kang ST (2012) Genetic map of lps3: a new short petiole gene in soybeans. Genome 55:140–146PubMedCrossRefGoogle Scholar
  53. Kassem M, El-Ahmed A, Hakim MS, Al-Saleh A, El-Khalifeh M, Nachit M (2011) Identifying leaf rust resistance gene Lr19 in durum wheat using simple sequence repeat (SSR) marker. Afr J Biotechnol 44:8716–8719Google Scholar
  54. Keller B, Feuillet C, Yahiaoui N (2005) Map-based isolation of disease resistance genes from bread wheat: cloning in a supersize genome. Genet Res 85:93–100PubMedCrossRefGoogle Scholar
  55. Koebner RMD, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection. Trends Biotechnol 21:59–63PubMedCrossRefGoogle Scholar
  56. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168PubMedCrossRefGoogle Scholar
  57. La H, Li J, Ji Z, Cheng Y, Li X, Jiang S, Venkatesh PN, Ramachandran S (2006) Genome-wide analysis of cyclin family in rice (Oryza sativa L.). Mol Gen Genomics 275:374–386CrossRefGoogle Scholar
  58. Lin S, Zhou Y, Chen G, Zhang Y, Zhang Y, Ning W, Pan D (2010) Molecular responses to the fungal pathogen Gibberella fujikuroi in the leaves of chewing cane (Saccharum officinarum L.). Sugar Technol 12:36–46CrossRefGoogle Scholar
  59. Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcollinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to fusarium head blight in wheat. Funct Integr Genomics 6:83–89PubMedCrossRefGoogle Scholar
  60. Liu H, Wang X, Zhang H, Yang Y, Ge X, Song F (2008) A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420:57–65PubMedCrossRefGoogle Scholar
  61. Long DL, Kolmer JA (1989) A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology 79:525–529CrossRefGoogle Scholar
  62. Maccaferri M, Sanguineti MC, Xie C, Smith JSC, Tuberosa R (2007) Relationships among durum wheat accessions. II. A comparison of molecular and pedigree information. Genome 50:385–399PubMedCrossRefGoogle Scholar
  63. Maccaferri M, Mantovani P, Tuberosa R, Deambrogio E, Giuliani S, Demontis A, Massi A, Sanguineti MC (2008) A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL. Theor Appl Genet 117:1225–1240PubMedCrossRefGoogle Scholar
  64. Maccaferri M, Sanguineti MC, Mantovani P, Demontis A, Massi A, Ammar K, Kolmer JA, Czembor JH, Ezrati S, Tuberosa R (2010) Association mapping of leaf rust response in durum wheat. Mol Breed 26:189–228CrossRefGoogle Scholar
  65. Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, del Moral LG, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438PubMedCrossRefGoogle Scholar
  66. Maleki L, Faris JD, Bowden RL, Gill BS, Fellers JP (2003) Physical and genetic mapping of wheat kinase analogs and NBS-LRR resistance gene analog. Crop Sci 43:660–670CrossRefGoogle Scholar
  67. Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, De Ambrogio E, Kilian A (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648CrossRefGoogle Scholar
  68. Mantovani P, Maccaferri M, Tuberosa R, Kolmer JA (2010) Virulence phenotypes and molecular genotypes in collections of Puccinia triticina from Italy. Plant Dis 94:420–424CrossRefGoogle Scholar
  69. Marone D, Del Olmo AI, Laido G, Sillero JC, Emeran AA, Russo MA, Ferragonio P, Giovanniello V, Mazzucotelli E, De Leonardis AM, De Vita P, Blanco A, Cattivelli L, Rubiales D, Mastrangelo AM (2009) Genetic analysis of durable resistance against leaf rust in durum wheat. Mol Breed 24:25–39CrossRefGoogle Scholar
  70. Martinez F, Rubiales D (2002) Resistance to leaf rust in the durum wheat Creso. Cer Rus Pow Mil Bull 2002/1130Google Scholar
  71. Martinez F, Sillero JC, Rubiales D (2007) Resistance to leaf rust in cultivars of bread wheat and durum wheat grown in Spain. Plant Breed 126:13–18CrossRefGoogle Scholar
  72. McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034CrossRefGoogle Scholar
  73. McHale L, Tan X, Khoel P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212PubMedCrossRefGoogle Scholar
  74. McIntosh RA, Dick PL (1975) Cytogenetical studies in wheat VII. Gene Lr23 for reaction to Puccinia recondita in Gabo and related cultivars. Aust J Biol Sci 28:201–211Google Scholar
  75. McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalog of gene symbols for wheat. In: Proceedings of the 9th International Wheat Genet Symp, Saskatoon, pp 1–235Google Scholar
  76. McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Somers DJ, Anderson OA (2011) Catalogue of gene symbols for wheat: 2011 supplement. In: 11th International Wheat Genetics Symposium, Brisbane, AustraliaGoogle Scholar
  77. McNeal FH, Konzak CF, Smith EP, Tate WS, Russell TS (1971) A uniform system for recording and processing cereal research data. USDA, Agricultural Research Service, Washington, DC, pp 34–121Google Scholar
  78. Meuwissen TH, Goddard ME (2001) Prediction of identity by descent probabilities from marker-haplotypes. Genet Sel Evol 33:605–634PubMedCrossRefGoogle Scholar
  79. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedGoogle Scholar
  80. Mucha A, Wierzbicki H (2012) Linear models for breeding values prediction in haplotype-assisted selection—an analysis of QTL-MAS Workshop 2011 Data. BMC Proc 6:S11PubMedCrossRefGoogle Scholar
  81. Mugford ST, Qi X, Bakht S, Hill L, Wegel E, Hughes R, Papadopoulou K, Melton R, Philo M, Sainsbury F, Lomonossoff GP, Roy AD, Goss RJM, Osbourn A (2009) A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21:2473–2484PubMedCrossRefGoogle Scholar
  82. Nijman IJ, Kuipers S, Verheul M, Guryev V, Cuppen E (2008) A genome-wide SNP panel for mapping and association studies in the rat. BMC Genomics 9:95PubMedCrossRefGoogle Scholar
  83. Ordoñez ME, Kolmer JA (2007) Simple sequence repeat diversity of a worldwide collection of Puccinia triticina from durum wheat. Phytopathol 97:574–583CrossRefGoogle Scholar
  84. Orrù L, Catillo G, Napolitano F, De Matteis G, Scatà MC, Signorelli F, Moioli B (2009) Characterization of a SNPs panel for meat traceability in six cattle breeds. Food Control 20:856–860CrossRefGoogle Scholar
  85. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35:D883–D887PubMedCrossRefGoogle Scholar
  86. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Bergès H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104PubMedCrossRefGoogle Scholar
  87. Paux E, Sourdille P, Mackay I, Feuillet C (2011) Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv. doi: 10.1016/j.biotechadv.2011.09.015 PubMedGoogle Scholar
  88. Pollock DD, Bergman A, Feldman MW, Goldstein DB (1998) Microsatellite behavior with range constraints: parameter estimation and improved distances for use in phylogenetic reconstruction. Theor Popul Biol 53:256–271PubMedCrossRefGoogle Scholar
  89. Qin B, Cao A, Wang H, Chen T, You FM, Liu Y, Ji J, Liu D, Chen P, Wang XE (2011) Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123:207–218PubMedCrossRefGoogle Scholar
  90. Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664PubMedCrossRefGoogle Scholar
  91. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880PubMedCrossRefGoogle Scholar
  92. Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Gilles C, Salse G (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484PubMedCrossRefGoogle Scholar
  93. Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA, Courtin CM, Bedo Z, Saulnier L, Guillon F, Balzergue S, Shewry PR, Feuillet C, Charmet G, Salse J (2011) Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 11:71–83PubMedCrossRefGoogle Scholar
  94. Saintenac C, Jiang D, Akhunov E (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12:88CrossRefGoogle Scholar
  95. Schnurbusch T, Collins NC, Eastwood RF, Sutton T, Jefferies SP, Langridge P (2007) Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor Appl Genet 115:451–461PubMedCrossRefGoogle Scholar
  96. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234PubMedCrossRefGoogle Scholar
  97. Shynbolat R, Aralbek R (2010) Evaluation of leaf rust resistance genes in durum wheat varieties in Kazakhstan. Asian Australas J Plant Sci Biotechnol 4:77–80Google Scholar
  98. Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P, Bhat PR, Bartoš J, Šafář J, Close TJ, Doležel J (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294PubMedCrossRefGoogle Scholar
  99. Singh R, Dhaliwal HS, Gill KS (1992) Diversity for leaf rust resistance in Triticum durum germplasm. Cer Rus Pow Mil Bull 20:62–67Google Scholar
  100. Singh RP, Huerta-Espino J, Pfeiffer W, Figueroa-Lopez P (2004) Occurrence and impact of a new leaf rust race on durum wheat in Northwestern Mexico from 2001 to 2003. Plant Dis 88:703–708CrossRefGoogle Scholar
  101. Singh B, Bansal UK, Forrest KL, Hayden MJ, Hare RA, Bariana HS (2010) Inheritance and chromosome location of leaf rust resistance in durum wheat cultivar Wollaroi 175:351–355Google Scholar
  102. Sobrino B, Brióna M, Carracedoa A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194PubMedCrossRefGoogle Scholar
  103. Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map of bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  104. Somyong S, Munkvold JD, Tanaka J, Benscher D, Sorrells ME (2011) Comparative genetic analysis of wheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perception and calcium signaling. Funct Integr Genomics 11:479–490PubMedCrossRefGoogle Scholar
  105. Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827PubMedGoogle Scholar
  106. Spielmeyer W, Huang L, Bariana H, Laroche A, Gill BS, Lugudah ES (2000) NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theor Appl Genet 101:1139–1144CrossRefGoogle Scholar
  107. Temel A, Senturk-Afirat F, Ertugrul A, Yumurtaci A, Aydin Y, Talas-Ogras T, Gozukirmizi N, Bolat N, Yorgancilar O, Belen S, Yildirim M, Cakmak M, Ozdemir E, Cetin L, Mert Z, Sipahi H, Albustan S, Akan K, Dusunceli F, Uncuoglu AA (2008) Yr10 gene polymorphism in bread wheat varieties. African J Biotechnol 7:2328–2332Google Scholar
  108. Terwilliger J (1995) A powerfull likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am J Hum Genet 56:777–787PubMedGoogle Scholar
  109. The International Brachypodium Initiative (IBI) (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  110. Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement: an overview. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol 1., Genomics approaches and platformsSpringer, Dordrecht, pp 1–12CrossRefGoogle Scholar
  111. Vietmeyer N (2011) Our daily bread; the essential Norman Borlaug. Bracing Books, LortonGoogle Scholar
  112. Vorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefGoogle Scholar
  113. Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K (1979) Hybridization of synthetic oligodeoxyribonucleotides to Phi-X 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 6:3543–3558PubMedCrossRefGoogle Scholar
  114. Weng J, Liu X, Wang Z, Wang J, Zhang L, Hao Z, Xie C, Li M, Zhang D, Bai L, Liu C, Zhang S, Li X (2012) Molecular mapping of the major resistance quantitative trait locus qHS2.09 with simple sequence repeat and single nucleotide polymorphism markers in maize. Genet Resist 102:692–699Google Scholar
  115. Wicker T, Yahiaoui N, Keller B (2007) Contrasting rates of evolution in Pm3 loci from three wheat species and rice. Genet 177:1207–1216CrossRefGoogle Scholar
  116. Winfield MO, Wilkinson PA, Allen AM, Barker GL, Coghill JA, Burridge A, Hall A, Brenchley RC, D’Amore R, Hall N, Bevan MW, Richmond T, Gerhardt DJ, Jeddeloh JA, Edwards KJ (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol J 10:733–742PubMedCrossRefGoogle Scholar
  117. Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189PubMedCrossRefGoogle Scholar
  118. Xue F, Wang C, Li C, Duan X, Zhou Y, Zhao N, Wang Y, Ji W (2012) Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet. doi: 10.1007/s00122-012-1923-1926 Google Scholar
  119. You FM, Huo N, Gu YQ, Lazo GR, Dvorak J, Anderson OD (2009) ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery. BMC Bioinf 10:331CrossRefGoogle Scholar
  120. Zhang W, Dubcovsky J (2011) Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645CrossRefGoogle Scholar
  121. Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377PubMedCrossRefGoogle Scholar
  122. Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 121:1613–1621PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Irma Terracciano
    • 1
  • Marco Maccaferri
    • 1
    Email author
  • Filippo Bassi
    • 1
    • 2
  • Paola Mantovani
    • 1
    • 3
  • Maria C. Sanguineti
    • 1
  • Silvio Salvi
    • 1
  • Hana Šimková
    • 4
  • Jaroslav Doležel
    • 4
  • Andrea Massi
    • 3
  • Karim Ammar
    • 5
  • James Kolmer
    • 6
  • Roberto Tuberosa
    • 1
  1. 1.Department of Agricultural Sciences (DipSA)University of BolognaBolognaItaly
  2. 2.Department of Plant SciencesNorth Dakota State UniversityFargoUSA
  3. 3.Società Produttori Sementi BolognaArgelatoItaly
  4. 4.Institute of Experimental BotanyOlomoucCzech Republic
  5. 5.CIMMYTTexcocoMexico
  6. 6.Cereal Disease Laboratory, Agricultural Research ServiceUS Department of AgricultureSt. PaulUSA

Personalised recommendations