Theoretical and Applied Genetics

, Volume 126, Issue 3, pp 673–692 | Cite as

The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci

  • Laura Georgi
  • Jennifer Johnson-Cicalese
  • Josh Honig
  • Sushma Parankush Das
  • Veeran D. Rajah
  • Debashish Bhattacharya
  • Nahla Bassil
  • Lisa J. Rowland
  • James Polashock
  • Nicholi Vorsa
Original Paper

Abstract

The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.

Abbreviations

FFRR

Field fruit-rot resistance

QTL

Quantitative trait locus/loci

SSR

Simple sequence repeat

SCAR

Sequence-characterized amplified region

COS

Conserved orthologous set

TAcy

Total anthocyanin

PAC

Proanthocyanidin

KW

Kruskal–Wallis

IM

Interval mapping

MQM

Multiple QTL mapping

MRR

Mean rot rating

RR

Rot rating

MFW

Mean fruit weight

SFY

Sound fruit yield

GAIIx

Genome Analyzer IIx

Supplementary material

122_2012_2010_MOESM1_ESM.docx (46 kb)
Supplementary material 1 (DOCX 46 kb)

References

  1. Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGII. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  2. Bassil N, Oda A, Hummer KE (2009) Blueberry microsatellite markers identify cranberry cultivars. Acta Hortic 810:181–186Google Scholar
  3. Basu A, Betts NM, Ortiz J, Simmons B, Wu M, Lyons TJ (2011) Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res 31:190–196PubMedCrossRefGoogle Scholar
  4. Bink MCAM, Totir LR, ter Braak CJF, Winkler CR, Boer MP, Smith OS (2012) QTL analysis of connected populations using ancestral marker and pedigree information. Theor Appl Genet 124:1097–1113PubMedCrossRefGoogle Scholar
  5. Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660CrossRefGoogle Scholar
  6. Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562PubMedCrossRefGoogle Scholar
  7. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685PubMedCrossRefGoogle Scholar
  8. Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182PubMedGoogle Scholar
  9. Chen Z, Hartmann HA, Wu M-J, Friedman EJ, Chen J-G, Pulley M, Schulze-Lefert P, Panstruga R, Jones AM (2006) Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Mol Biol 60:583–597PubMedCrossRefGoogle Scholar
  10. Costich DE, Ortiz R, Meagher TR, Bruederle LP, Vorsa N (1993) Determination of ploidy level and nuclear DNA content in blueberry by flow cytometry. Theor Appl Genet 86:1001–1006CrossRefGoogle Scholar
  11. Deubert KH (1978) A rapid method for the extraction and quantitation of total anthocyanin of cranberry fruit. J Agric Food Chem 26:1452–1453PubMedCrossRefGoogle Scholar
  12. Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159PubMedCrossRefGoogle Scholar
  13. Frary A, Fulton TM, Zamir D, Tanksley SD (2004) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496PubMedCrossRefGoogle Scholar
  14. Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549PubMedCrossRefGoogle Scholar
  15. Georgi LL, Herai RH, Vidal R, Carazzolle MF, Pereira GG, Polashock J, Vorsa N (2012) Cranberry microsatellite marker development from assembled next-generation genomic sequence. Mol Breeding 30:227–237. doi:10.1007/s11032-011-9613-7 CrossRefGoogle Scholar
  16. Graham J, Hackett CA, Smith K, Woodhead M, Hein I, McCallum S (2009) Mapping QTLs for the developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet 118:1143–1155PubMedCrossRefGoogle Scholar
  17. Green MB, Finn KJ, Li JJ (2010) Loss of DNA replication control is a potent inducer of gene amplification. Science 329:943–946PubMedCrossRefGoogle Scholar
  18. Hall SH, Galletta GJ (1971) Comparative chromosome morphology of diploid Vaccinium species. J Am Soc Hortic Sci 96:289–292Google Scholar
  19. Henry Y, Bedhomme M, Blanc G (2006) History, protohistory and prehistory of the Arabidopsis thaliana chromosome complement. Trends Plant Sci 11:267–273PubMedCrossRefGoogle Scholar
  20. Honig JA, Bonos SA, Meyer WA (2010) Isolation and characterization of 88 polymorphic microsatellite markers in Kentucky Bluegrass (Poa pratensis L.). HortScience 45:1759–1763Google Scholar
  21. Hyne V, Kearsey MJ, Pike DJ, Snape JW (1995) QTL analysis: unreliability and bias in estimation procedures. Mol Breed 1:273–282CrossRefGoogle Scholar
  22. Jaakola L, Poole M, Jones MO, Kämäräinen-Karppinen T, Koskimäki JJ, Hohtola A, Häggman H, Fraser PD, Manning K, King GJ, Thomson H, Seymour GB (2010) A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol 153:1619–1629PubMedCrossRefGoogle Scholar
  23. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedCrossRefGoogle Scholar
  24. Johnson-Cicalese J, Vorsa N, Polashock J (2009) Breeding for fruit rot resistance in Vaccinium macrocarpon. Acta Hortic 810:191–198Google Scholar
  25. Jones P, Messner B, Nakajima J, Schäffner AR, Saito K (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278(45):43910–43918PubMedCrossRefGoogle Scholar
  26. Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36:D1034–D1040PubMedCrossRefGoogle Scholar
  27. Kent WJ (2002) BLAT: the BLAST-like alignment tool. Genome Res 12:656–664PubMedGoogle Scholar
  28. Kondo M, MacKinnon SL, Craft CC, Matchett MD, Hurta RAR, Neto CC (2011) Ursolic acid and its esters: occurrence in cranberries and other Vaccinium fruit and effects on matrix metalloproteinase activity in DU145 prostate tumor cells. J Sci Food Agric 91:789–796PubMedCrossRefGoogle Scholar
  29. Koo H, Duarte S, Murata RM, Scott-Anne K, Gregoire S, Watson GE, Singh AP, Vorsa N (2010) Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Res 44:116–126PubMedCrossRefGoogle Scholar
  30. Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7PubMedCrossRefGoogle Scholar
  31. Kresty LA, Howell AB, Baird M (2011) Cranberry proanthocyanidins mediate growth arrest of lung cancer cells through modulation of gene expression and rapid induction of apoptosis. Molecules 16:2375–2390PubMedCrossRefGoogle Scholar
  32. Laluk K, Mengiste T (2010) Necrotroph attacks on plants: Wanton destruction or covert extortion? Arabidopsis B 8:e0136. doi:10.1199/tab.0136 Google Scholar
  33. Latunde-Dada AO (2001) Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout. Mol Plant Pathol 2:197–198CrossRefGoogle Scholar
  34. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659PubMedCrossRefGoogle Scholar
  35. Li J, Wang S, Zeng Z-B (2006) Multiple-interval mapping for ordinal traits. Genetics 173:1649–1663PubMedCrossRefGoogle Scholar
  36. Li H, Bradbury P, Ersoz E, Buckler ES, Wang J (2011) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE 6(3):e17573. doi:10.1371/journal.pone.0017573 PubMedCrossRefGoogle Scholar
  37. Neto CC (2007) Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51:652–664. doi:10.1002/mnfr.200600279 PubMedCrossRefGoogle Scholar
  38. Oudemans P, Caruso F, Stretch A (1998) Cranberry fruit rot in the Northeast: a complex disease. Plant Dis 82:1176–1184CrossRefGoogle Scholar
  39. Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH, Winkel BSJ (2008) Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol 147:1046–1061PubMedCrossRefGoogle Scholar
  40. Polashock JJ, Vorsa N (2002) Development of SCAR markers for DNA fingerprinting and germplasm analysis of American cranberry. J Am Soc Hortic Sci 127:677–684Google Scholar
  41. Polashock JJ, Griesbach RJ, Sullivan RF, Vorsa N (2002) Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco. Plant Sci 163:241–251CrossRefGoogle Scholar
  42. Preuß A, Stracke R, Weisshaar B, Hillebrecht A, Matern U, Martens S (2009) Arabidopsis thaliana expresses a second functional flavonol synthase. FEBS Lett 583:1981–1986PubMedCrossRefGoogle Scholar
  43. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Baljit K, Prabhu A-L, Tam A, Zhao YJ, Moore TA, Hirst M, Marra MA, Jones SJM, Hoodless PA, Birol I (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7:909–912PubMedCrossRefGoogle Scholar
  44. Rodriguez-Saona C, Vorsa N, Singh AP, Johnson-Cicalese J, Szendrei Z, Mescher MC, Frost CJ (2011) Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. J Exp Bot 62:2633–2644PubMedCrossRefGoogle Scholar
  45. Rowland LJ, Ogden E, Ehlenfeldt MK (2010) EST-PCR markers developed for highbush blueberry are also useful for genetic fingerprinting and relationship studies in rabbiteye blueberry. Sci Hortic 125:779–784CrossRefGoogle Scholar
  46. Sapers GM, Phillips JG, Rudolf HM, DiVito AM (1983) Cranberry quality: selection procedures for breeding programs. J Am Soc Hortic Sci 108:241–246Google Scholar
  47. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol 18:233–234CrossRefGoogle Scholar
  48. Shabrova EV, Tarnopolsky O, Singh AP, Plutzky J, Vorsa N, Quadro L (2011) Insights into the molecular mechanisms of the anti-atherogenic actions of flavonoids in normal and obese mice. PLoS ONE 6(10):e24634PubMedCrossRefGoogle Scholar
  49. Simko I, Piepho H-P (2011) Combining phenotypic data from ordinal rating scales in multiple plant experiments. Trends Plant Sci 16:235–237PubMedCrossRefGoogle Scholar
  50. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123PubMedCrossRefGoogle Scholar
  51. Singh AP, Singh RK, Kim KK, Satyan KS, Nussbaum R, Torres M, Brard L, Vorsa N (2009) Cranberry proanthocyanidins are cytotoxic to human cancer cells and sensitize platinum-resistant ovarian cancer cells to paraplatin. Phytother Res 23:1066–1074PubMedCrossRefGoogle Scholar
  52. Singh AP, Lange TS, Kim KK, Brard L, Horan T, Moore RG, Vorsa N, Singh RK (2012) Purified cranberry proanthocyanidines (PAC-1A) cause pro-apoptotic signaling, ROS generation, cyclophosphamide retention and cytotoxicity in high-risk neuroblastoma cells. Int J Oncol 40:99–108PubMedGoogle Scholar
  53. Stewart CN, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–750PubMedGoogle Scholar
  54. Stiles CM, Oudemans PV (1998) Distribution of cranberry fruit-rotting fungi in New Jersey and evidence for nonspecific host resistance. Phytopathology 89:218–225CrossRefGoogle Scholar
  55. Tadych M, Bergen MS, Johnson-Cicalese J, Polashock JJ, Vorsa N, White JF Jr (2012) Endophytic and pathogenic fungi of developing cranberry ovaries from flower to mature fruit: diversity and succession. Fungal Divers 54:101–116CrossRefGoogle Scholar
  56. Tanabe S, Santos J, La VD, Howell AB, Grenier D (2011) A-type cranberry proanthocyanidins inhibit the RANKL-dependent differentiation and function of human osteoclasts. Molecules 16:2365–2374PubMedCrossRefGoogle Scholar
  57. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822PubMedCrossRefGoogle Scholar
  58. Urbaniak GC, Plous S (2012). Research Randomizer (Version 3.0) [Computer software]. Retrieved on 18 January 2012. http://www.randomizer.org/
  59. Van Ooijen JW (2006) JoinMap® 4: software for the calculation of genetic linkage maps in experimental populations. Wageningen, Kyazma B.V.Google Scholar
  60. Van Ooijen JW (2009) MapQTL® 6: software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Kyazma B.V.Google Scholar
  61. Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genetics Res 93:343–349CrossRefGoogle Scholar
  62. Verhoeven KJF, Jannink J-L, McIntyre LM (2006) Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity 96:139–149PubMedCrossRefGoogle Scholar
  63. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  64. Vorsa N, Johnson-Cicalese J (2005) Breeding the American cranberry for health constituents: genetic variation for proanthocyanidin content. Acta Hortic 715:243–251Google Scholar
  65. Vorsa N, Johnson-Cicalese J (2011) American cranberry, Chap. 6. In: Badenes ML, Byrne DH (eds) Fruit breeding, handbook of plant breeding 8. Springer Science and Business Media, LLC, pp 191–223. doi:10.1007/978-1-4419-0763-9_6
  66. Vvedenskaya IO, Vorsa N (2004) Flavonoid composition over fruit development and maturation in American cranberry, Vaccinium macrocarpon Ait. Plant Sci 167:1043–1054CrossRefGoogle Scholar
  67. Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry cell biology, and biotechnology. Plant Physiol 126:485–493PubMedCrossRefGoogle Scholar
  68. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875PubMedCrossRefGoogle Scholar
  69. Wu F, Mueller LA, Crouzillat D, Pétiard, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420PubMedCrossRefGoogle Scholar
  70. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2012

Authors and Affiliations

  • Laura Georgi
    • 1
    • 2
  • Jennifer Johnson-Cicalese
    • 1
  • Josh Honig
    • 3
  • Sushma Parankush Das
    • 4
    • 5
  • Veeran D. Rajah
    • 4
  • Debashish Bhattacharya
    • 4
  • Nahla Bassil
    • 6
  • Lisa J. Rowland
    • 7
  • James Polashock
    • 8
  • Nicholi Vorsa
    • 1
    • 3
  1. 1.Marucci Center for Blueberry and Cranberry Research and ExtensionRutgers UniversityChatsworthUSA
  2. 2.The American Chestnut Foundation Meadowview Research FarmsMeadowviewUSA
  3. 3.Department of Plant Biology and PathologyRutgers UniversityNew BrunswickUSA
  4. 4.Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickUSA
  5. 5.Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreUSA
  6. 6.USDA-ARSNational Clonal Germplasm RepositoryCorvallisUSA
  7. 7.USDA-ARSGenetic Improvement of Fruits and Vegetables LabBeltsvilleUSA
  8. 8.USDA-ARSGenetic Improvement of Fruits and Vegetables LabChatsworthUSA

Personalised recommendations